$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 6 ( x^{2} + x + 1 )^{6} + \left(12 x + 14\right) ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 2$
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $48$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$C_2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, 3, 4]$ |
Visible Swan slopes: | $[1,2,3]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}\rangle$ |
Rams: | $(1, 3, 7)$ |
Jump set: | $[1, 3, 7, 15]$ |
Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{8} + \left(8 t + 8\right) x^{7} + 8 x^{5} + 2 t x^{4} + 8 t x^{3} + \left(4 t + 4\right) x^{2} + 8 t x + 6 \)
$\ \in\Q_{2}(t)[x]$
|
Galois degree: |
$256$
|
Galois group: |
$C_2^2.C_2\wr C_4$ (as 16T681)
|
Inertia group: |
not computed
|
Wild inertia group: |
not computed
|
Galois unramified degree: |
$4$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, 3, \frac{7}{2}, 4]$
|
Galois Swan slopes: |
$[1,1,1,2,\frac{5}{2},3]$
|
Galois mean slope: |
$3.46875$
|
Galois splitting model: | not computed |