Show commands: Magma
Group invariants
Abstract group: | $C_2^2.C_2\wr C_4$ |
| |
Order: | $256=2^{8}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $6$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $681$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,13,6,9)(2,14,5,10)(3,15)(4,16)(7,11,8,12)$, $(1,14,8,11,6,9,3,15,2,13,7,12,5,10,4,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $32$: $C_2^3 : C_4 $ $64$: $((C_8 : C_2):C_2):C_2$ $128$: 16T397 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T680 x 2, 16T681, 32T3292, 32T3293 x 2, 32T3294, 32T3295, 32T3296, 32T7423, 32T7428Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
2C | $2^{8}$ | $16$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,11)(10,12)(13,15)(14,16)$ |
2D | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 3, 7)( 4, 8)( 5, 6)( 9,14)(10,13)(11,12)$ |
4A | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$ |
4B | $4^{2},2^{2},1^{4}$ | $8$ | $4$ | $8$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)(11,12)(15,16)$ |
4C | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,11,10,12)(13,16,14,15)$ |
4D | $4^{2},2^{2},1^{4}$ | $16$ | $4$ | $8$ | $( 3, 4)( 5, 6)( 9,16,10,15)(11,14,12,13)$ |
4E1 | $4^{3},2^{2}$ | $32$ | $4$ | $11$ | $( 1,16)( 2,15)( 3,14, 7, 9)( 4,13, 8,10)( 5,12, 6,11)$ |
4E-1 | $4^{3},2^{2}$ | $32$ | $4$ | $11$ | $( 1,16)( 2,15)( 3, 9, 7,14)( 4,10, 8,13)( 5,11, 6,12)$ |
8A1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 7, 6, 4, 2, 8, 5, 3)( 9,16,13,11,10,15,14,12)$ |
8A-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,12,14,15,10,11,13,16)$ |
8B | $8,4,1^{4}$ | $16$ | $8$ | $10$ | $( 1, 7, 5, 4, 2, 8, 6, 3)(11,16,12,15)$ |
8C | $8,4,2^{2}$ | $16$ | $8$ | $12$ | $( 1, 2)( 3, 8, 4, 7)( 5, 6)( 9,12,14,16,10,11,13,15)$ |
16A1 | $16$ | $16$ | $16$ | $15$ | $( 1,10, 7,15, 6,14, 4,12, 2, 9, 8,16, 5,13, 3,11)$ |
16A-1 | $16$ | $16$ | $16$ | $15$ | $( 1,15, 8,14, 6,12, 3, 9, 2,16, 7,13, 5,11, 4,10)$ |
16B1 | $16$ | $16$ | $16$ | $15$ | $( 1,13, 7,11, 6,10, 4,15, 2,14, 8,12, 5, 9, 3,16)$ |
16B-1 | $16$ | $16$ | $16$ | $15$ | $( 1,11, 8,10, 6,15, 3,14, 2,12, 7, 9, 5,16, 4,13)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 8A1 | 8A-1 | 8B | 8C | 16A1 | 16A-1 | 16B1 | 16B-1 | ||
Size | 1 | 1 | 2 | 16 | 16 | 4 | 8 | 16 | 16 | 32 | 32 | 8 | 8 | 16 | 16 | 16 | 16 | 16 | 16 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2B | 2B | 2D | 2D | 4A | 4A | 4B | 4B | 8A1 | 8A-1 | 8A1 | 8A-1 | |
Type | ||||||||||||||||||||
256.511.1a | R | |||||||||||||||||||
256.511.1b | R | |||||||||||||||||||
256.511.1c | R | |||||||||||||||||||
256.511.1d | R | |||||||||||||||||||
256.511.1e1 | C | |||||||||||||||||||
256.511.1e2 | C | |||||||||||||||||||
256.511.1f1 | C | |||||||||||||||||||
256.511.1f2 | C | |||||||||||||||||||
256.511.2a | R | |||||||||||||||||||
256.511.2b | R | |||||||||||||||||||
256.511.4a | R | |||||||||||||||||||
256.511.4b | R | |||||||||||||||||||
256.511.4c | R | |||||||||||||||||||
256.511.4d1 | C | |||||||||||||||||||
256.511.4d2 | C | |||||||||||||||||||
256.511.4e1 | C | |||||||||||||||||||
256.511.4e2 | C | |||||||||||||||||||
256.511.8a | R | |||||||||||||||||||
256.511.8b | R |
Regular extensions
Data not computed