Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $681$ | |
| Group : | $C_4:D_4.D_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $6$ | |
| Generators: | (1,13,6,9)(2,14,5,10)(3,15)(4,16)(7,11,8,12), (1,14,8,11,6,9,3,15,2,13,7,12,5,10,4,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 32: $C_2^3 : C_4 $ 64: $((C_8 : C_2):C_2):C_2$ 128: 16T397 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T680 x 2, 16T681, 32T3292, 32T3293 x 2, 32T3294, 32T3295, 32T3296, 32T7423, 32T7428Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $16$ | $4$ | $( 5, 6)( 7, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 4)( 7, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 8, 4, 1, 1, 1, 1 $ | $16$ | $8$ | $( 3, 7, 4, 8)( 9,11,14,15,10,12,13,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 7)( 4, 8)( 5, 6)( 9,13)(10,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 4, 2, 2 $ | $16$ | $8$ | $( 1, 2)( 3, 7, 4, 8)( 5, 6)( 9,15,13,11,10,16,14,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,15,10,16)(11,14,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,12,14,15,10,11,13,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 2, 2 $ | $32$ | $4$ | $( 1, 9, 5,13)( 2,10, 6,14)( 3,11, 4,12)( 7,16)( 8,15)$ |
| $ 16 $ | $16$ | $16$ | $( 1, 9, 3,11, 5,14, 8,16, 2,10, 4,12, 6,13, 7,15)$ |
| $ 16 $ | $16$ | $16$ | $( 1, 9, 4,12, 5,14, 7,15, 2,10, 3,11, 6,13, 8,16)$ |
| $ 16 $ | $16$ | $16$ | $( 1, 9, 7,11, 5,13, 3,15, 2,10, 8,12, 6,14, 4,16)$ |
| $ 16 $ | $16$ | $16$ | $( 1, 9, 8,12, 5,13, 4,16, 2,10, 7,11, 6,14, 3,15)$ |
| $ 4, 4, 4, 2, 2 $ | $32$ | $4$ | $( 1, 9, 5,14)( 2,10, 6,13)( 3,15, 4,16)( 7,12)( 8,11)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 511] |
| Character table: |
2 8 7 4 5 4 4 8 4 4 4 5 5 6 3 4 4 4 4 3
1a 2a 4a 4b 8a 2b 2c 8b 4c 2d 8c 8d 4d 4e 16a 16b 16c 16d 4f
2P 1a 1a 2a 2a 4b 1a 1a 4b 2a 1a 4d 4d 2c 2b 8c 8c 8d 8d 2b
3P 1a 2a 4a 4b 8a 2b 2c 8b 4c 2d 8d 8c 4d 4f 16c 16d 16a 16b 4e
5P 1a 2a 4a 4b 8a 2b 2c 8b 4c 2d 8c 8d 4d 4e 16a 16b 16c 16d 4f
7P 1a 2a 4a 4b 8a 2b 2c 8b 4c 2d 8d 8c 4d 4f 16c 16d 16a 16b 4e
11P 1a 2a 4a 4b 8a 2b 2c 8b 4c 2d 8d 8c 4d 4f 16c 16d 16a 16b 4e
13P 1a 2a 4a 4b 8a 2b 2c 8b 4c 2d 8c 8d 4d 4e 16a 16b 16c 16d 4f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 1 -1 1 1 -1 1 -1 1 1 1 -1 1 1 1 1 -1
X.3 1 1 -1 1 -1 1 1 -1 1 -1 1 1 1 1 -1 -1 -1 -1 1
X.4 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
X.5 1 1 -1 1 1 -1 1 1 1 -1 -1 -1 1 B -B -B B B -B
X.6 1 1 -1 1 1 -1 1 1 1 -1 -1 -1 1 -B B B -B -B B
X.7 1 1 1 1 -1 -1 1 -1 1 1 -1 -1 1 B B B -B -B -B
X.8 1 1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -B -B -B B B B
X.9 2 2 . 2 . 2 2 . -2 . -2 -2 2 . . . . . .
X.10 2 2 . 2 . -2 2 . -2 . 2 2 2 . . . . . .
X.11 4 4 -2 . . . 4 . . 2 . . -4 . . . . . .
X.12 4 4 2 . . . 4 . . -2 . . -4 . . . . . .
X.13 4 4 . -4 . . 4 . . . . . 4 . . . . . .
X.14 4 -4 . . . . 4 . . . A -A . . C -C /C -/C .
X.15 4 -4 . . . . 4 . . . -A A . . /C -/C C -C .
X.16 4 -4 . . . . 4 . . . A -A . . -C C -/C /C .
X.17 4 -4 . . . . 4 . . . -A A . . -/C /C -C C .
X.18 8 . . . -2 . -8 2 . . . . . . . . . . .
X.19 8 . . . 2 . -8 -2 . . . . . . . . . . .
A = -2*E(4)
= -2*Sqrt(-1) = -2i
B = -E(4)
= -Sqrt(-1) = -i
C = -1-E(4)
= -1-Sqrt(-1) = -1-i
|