Properties

Label 2.2.8.40d1.29
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(40\)
Galois group $C_2^3:\OD_{16}$ (as 16T252)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 4 ( x^{2} + x + 1 ) + 4 x + 10$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $40$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, 3]$
Visible Swan slopes:$[1,2,2]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}\rangle$
Rams:$(1, 3, 3)$
Jump set:$[1, 2, 4, 16]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.4a1.2, 2.2.4.16b2.10, 2.2.4.16b1.6, 2.2.4.16b2.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 4 x^{5} + 2 x^{4} + 4 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^3 + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[13, 12, 4, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2^3:\OD_{16}$ (as 16T252)
Inertia group: Intransitive group isomorphic to $C_2^3\times C_4$
Wild inertia group: $C_2^3\times C_4$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 3, 3]$
Galois Swan slopes: $[1,1,1,2,2]$
Galois mean slope: $2.6875$
Galois splitting model: $x^{16} - 4 x^{14} - 18 x^{12} - 132 x^{10} - 525 x^{8} - 1108 x^{6} - 1358 x^{4} + 864 x^{2} + 361$ Copy content Toggle raw display