Properties

Label 2.2.8.36b2.38
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(36\)
Galois group $C_2^2.D_4$ (as 16T54)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{3} + 6$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $36$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2\times C_4$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, 3]$
Visible Swan slopes:$[1,1,2]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$
Rams:$(1, 1, 5)$
Jump set:$[1, 3, 11, 19]$
Roots of unity:$12 = (2^{ 2 } - 1) \cdot 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-5})$, 2.2.2.4a1.1, 2.2.2.4a2.1 x2, 2.1.4.6a1.2 x2, 2.2.4.12a1.3, 2.2.4.16b2.2, 2.2.4.16b2.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 4 x^{7} + 2 x^{6} + 4 t x^{3} + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + 1$,$z + t$
Associated inertia:$1$,$1$
Indices of inseparability:$[11, 6, 6, 0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $C_2^2.D_4$ (as 16T54)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, 3]$
Galois Swan slopes: $[1,1,2,2]$
Galois mean slope: $2.625$
Galois splitting model:not computed