Properties

Label 2.2.8.36b18.22
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(36\)
Galois group $C_2^5:C_4$ (as 16T227)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 4 x ( x^{2} + x + 1 )^{3} + 8 x + 6$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $36$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, 3]$
Visible Swan slopes:$[1,1,2]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$
Rams:$(1, 1, 5)$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.4a2.1, 2.2.2.6a1.2, 2.2.2.6a1.3, 2.2.4.12a7.2, 2.2.4.16b5.2, 2.2.4.16b5.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + \left(4 t + 4\right) x^{7} + \left(2 t + 2\right) x^{6} + \left(4 t + 4\right) x^{5} + 2 t x^{4} + 4 t x^{3} + 8 t + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + t z^2 + (t + 1)$,$(t + 1) z + t$
Associated inertia:$2$,$1$
Indices of inseparability:$[11, 6, 4, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2^5:C_4$ (as 16T227)
Inertia group: Intransitive group isomorphic to $C_2^5$
Wild inertia group: $C_2^5$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 2, 3]$
Galois Swan slopes: $[1,1,1,1,2]$
Galois mean slope: $2.4375$
Galois splitting model: $x^{16} - 12 x^{14} + 48 x^{12} - 144 x^{10} + 380 x^{8} - 624 x^{6} + 528 x^{4} - 192 x^{2} + 16$ Copy content Toggle raw display