Properties

Label 2.2.8.32c10.4
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(32\)
Galois group $C_2^2.C_2\wr C_4$ (as 16T681)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 ) + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $32$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, \frac{5}{2}]$
Visible Swan slopes:$[1,1,\frac{3}{2}]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}\rangle$
Rams:$(1, 1, 3)$
Jump set:$[1, 2, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.4a2.1, 2.2.4.12a4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 2 t x^{6} + \left(4 t + 2\right) x^{4} + \left(4 t + 4\right) x + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + z^2 + t$,$t z + (t + 1)$
Associated inertia:$2$,$1$
Indices of inseparability:$[9, 6, 4, 0]$

Invariants of the Galois closure

Galois degree: $256$
Galois group: $C_2^2.C_2\wr C_4$ (as 16T681)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 2, \frac{9}{4}, \frac{5}{2}]$
Galois Swan slopes: $[1,1,1,1,\frac{5}{4},\frac{3}{2}]$
Galois mean slope: $2.28125$
Galois splitting model:not computed