Properties

Label 2.2.8.32b1.55
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(32\)
Galois group $C_2^4.\GL(2,3)$ (as 16T1069)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{3} + 2 ( x^{2} + x + 1 )^{2} + 4 ( x^{2} + x + 1 ) + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $32$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{4}{3}, 3]$
Visible Swan slopes:$[\frac{1}{3},\frac{1}{3},2]$
Means:$\langle\frac{1}{6}, \frac{1}{4}, \frac{9}{8}\rangle$
Rams:$(\frac{1}{3}, \frac{1}{3}, 7)$
Jump set:$[1, 2, 5, 13]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.1.4.4a1.1, 2.2.4.8a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 4 t x^{7} + 4 x^{3} + 2 x^{2} + 4 x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[9, 2, 2, 0]$

Invariants of the Galois closure

Galois degree: $768$
Galois group: $C_2^4.\GL(2,3)$ (as 16T1069)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, \frac{3}{2}, 2, \frac{7}{3}, \frac{7}{3}, 3]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},\frac{1}{2},1,\frac{4}{3},\frac{4}{3},2]$
Galois mean slope: $2.5833333333333335$
Galois splitting model:not computed