Show commands: Magma
Group invariants
| Abstract group: | $C_2^4.\GL(2,3)$ |
| |
| Order: | $768=2^{8} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $1069$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,3)(2,4)(5,14)(6,13)(7,15)(8,16)(9,11,10,12)$, $(1,15,7,12)(2,16,8,11)(3,14,5,9,4,13,6,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $6$: $S_3$ $12$: $C_3 : C_4$ $24$: $S_4$ $48$: $\textrm{GL(2,3)}$, 12T27, 16T65 $96$: 32T415 $192$: 16T432 $384$: 24T811 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $S_4$
Degree 8: $S_4$
Low degree siblings
16T1061 x 2, 16T1069, 32T34707 x 2, 32T34715, 32T34716, 32T35038Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 1, 2)( 7, 8)( 9,10)(13,14)$ |
| 2C | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(13,14)(15,16)$ |
| 2D | $2^{2},1^{12}$ | $4$ | $2$ | $2$ | $(5,6)(7,8)$ |
| 2E | $2^{4},1^{8}$ | $6$ | $2$ | $4$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| 2F | $2^{4},1^{8}$ | $6$ | $2$ | $4$ | $( 1, 2)( 5, 6)(11,12)(13,14)$ |
| 2G | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $( 3, 4)( 5, 6)(11,12)(13,14)$ |
| 3A | $3^{4},1^{4}$ | $32$ | $3$ | $8$ | $( 1,14, 9)( 2,13,10)( 3,15,12)( 4,16,11)$ |
| 4A1 | $4^{2},2^{4}$ | $24$ | $4$ | $10$ | $( 1,14, 2,13)( 3,16)( 4,15)( 5,11, 6,12)( 7,10)( 8, 9)$ |
| 4A-1 | $4^{2},2^{4}$ | $24$ | $4$ | $10$ | $( 1,13, 2,14)( 3,16)( 4,15)( 5,12, 6,11)( 7,10)( 8, 9)$ |
| 4B | $4^{2},2^{4}$ | $48$ | $4$ | $10$ | $( 1, 8, 2, 7)( 3, 6)( 4, 5)( 9,13,10,14)(11,16)(12,15)$ |
| 4C1 | $4^{3},2^{2}$ | $48$ | $4$ | $11$ | $( 1,16, 2,15)( 3,14, 4,13)( 5, 8)( 6, 7)( 9,12,10,11)$ |
| 4C-1 | $4^{3},2^{2}$ | $48$ | $4$ | $11$ | $( 1,15, 2,16)( 3,13, 4,14)( 5, 8)( 6, 7)( 9,11,10,12)$ |
| 4D1 | $4,2^{6}$ | $48$ | $4$ | $9$ | $( 1,15)( 2,16)( 3,14)( 4,13)( 5, 7, 6, 8)( 9,12)(10,11)$ |
| 4D-1 | $4,2^{6}$ | $48$ | $4$ | $9$ | $( 1,15)( 2,16)( 3,14)( 4,13)( 5, 8, 6, 7)( 9,12)(10,11)$ |
| 6A | $6^{2},1^{4}$ | $32$ | $6$ | $10$ | $( 1,10,14, 2, 9,13)( 3,11,15, 4,12,16)$ |
| 6B | $3^{4},2^{2}$ | $32$ | $6$ | $10$ | $( 1, 9,13)( 2,10,14)( 3,12,16)( 4,11,15)( 5, 6)( 7, 8)$ |
| 6C | $6^{2},2^{2}$ | $32$ | $6$ | $12$ | $( 1,14, 7, 2,13, 8)( 3,16, 6, 4,15, 5)( 9,10)(11,12)$ |
| 6D1 | $6,3^{2},2,1^{2}$ | $32$ | $6$ | $10$ | $( 1, 7,10)( 2, 8, 9)( 3, 6,12, 4, 5,11)(13,14)$ |
| 6D-1 | $6,3^{2},2,1^{2}$ | $32$ | $6$ | $10$ | $( 1,10, 7)( 2, 9, 8)( 3,11, 5, 4,12, 6)(13,14)$ |
| 6E1 | $6,3^{2},2,1^{2}$ | $32$ | $6$ | $10$ | $( 1, 8,14)( 2, 7,13)( 3, 6,16, 4, 5,15)(11,12)$ |
| 6E-1 | $6,3^{2},2,1^{2}$ | $32$ | $6$ | $10$ | $( 1,14, 8)( 2,13, 7)( 3,15, 5, 4,16, 6)(11,12)$ |
| 8A1 | $8,4^{2}$ | $48$ | $8$ | $13$ | $( 1,12,14, 5, 2,11,13, 6)( 3,10,16, 7)( 4, 9,15, 8)$ |
| 8A-1 | $8,4^{2}$ | $48$ | $8$ | $13$ | $( 1, 6,13,11, 2, 5,14,12)( 3, 7,16,10)( 4, 8,15, 9)$ |
| 8A3 | $8,4^{2}$ | $48$ | $8$ | $13$ | $( 1, 5,13,12, 2, 6,14,11)( 3, 7,16,10)( 4, 8,15, 9)$ |
| 8A-3 | $8,4^{2}$ | $48$ | $8$ | $13$ | $( 1,11,14, 6, 2,12,13, 5)( 3,10,16, 7)( 4, 9,15, 8)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 4A1 | 4A-1 | 4B | 4C1 | 4C-1 | 4D1 | 4D-1 | 6A | 6B | 6C | 6D1 | 6D-1 | 6E1 | 6E-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | ||
| Size | 1 | 1 | 2 | 4 | 4 | 6 | 6 | 8 | 32 | 24 | 24 | 48 | 48 | 48 | 48 | 48 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 48 | 48 | 48 | 48 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2F | 2F | 2B | 2C | 2C | 2D | 2D | 3A | 3A | 3A | 3A | 3A | 3A | 3A | 4A1 | 4A-1 | 4A-1 | 4A1 | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 4A-1 | 4A1 | 4B | 4C-1 | 4C1 | 4D-1 | 4D1 | 2C | 2D | 2A | 2G | 2G | 2B | 2B | 8A3 | 8A-3 | 8A1 | 8A-1 | |
| Type | ||||||||||||||||||||||||||||
| 768.1085346.1a | R | |||||||||||||||||||||||||||
| 768.1085346.1b | R | |||||||||||||||||||||||||||
| 768.1085346.1c1 | C | |||||||||||||||||||||||||||
| 768.1085346.1c2 | C | |||||||||||||||||||||||||||
| 768.1085346.2a | R | |||||||||||||||||||||||||||
| 768.1085346.2b | S | |||||||||||||||||||||||||||
| 768.1085346.2c1 | C | |||||||||||||||||||||||||||
| 768.1085346.2c2 | C | |||||||||||||||||||||||||||
| 768.1085346.2d1 | S | |||||||||||||||||||||||||||
| 768.1085346.2d2 | S | |||||||||||||||||||||||||||
| 768.1085346.3a | R | |||||||||||||||||||||||||||
| 768.1085346.3b | R | |||||||||||||||||||||||||||
| 768.1085346.3c1 | C | |||||||||||||||||||||||||||
| 768.1085346.3c2 | C | |||||||||||||||||||||||||||
| 768.1085346.4a | R | |||||||||||||||||||||||||||
| 768.1085346.4b | S | |||||||||||||||||||||||||||
| 768.1085346.6a1 | C | |||||||||||||||||||||||||||
| 768.1085346.6a2 | C | |||||||||||||||||||||||||||
| 768.1085346.6b1 | C | |||||||||||||||||||||||||||
| 768.1085346.6b2 | C | |||||||||||||||||||||||||||
| 768.1085346.8a | R | |||||||||||||||||||||||||||
| 768.1085346.8b | R | |||||||||||||||||||||||||||
| 768.1085346.8c1 | C | |||||||||||||||||||||||||||
| 768.1085346.8c2 | C | |||||||||||||||||||||||||||
| 768.1085346.8d1 | C | |||||||||||||||||||||||||||
| 768.1085346.8d2 | C | |||||||||||||||||||||||||||
| 768.1085346.12a | R |
Regular extensions
Data not computed