$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $24$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[\frac{4}{3}, \frac{4}{3}, 2]$ |
| Visible Swan slopes: | $[\frac{1}{3},\frac{1}{3},1]$ |
| Means: | $\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
| Rams: | $(\frac{1}{3}, \frac{1}{3}, 3)$ |
| Jump set: | $[1, 2, 5, 13]$ |
| Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Galois degree: |
$1152$
|
| Galois group: |
$\SL(2,3)\wr C_2$ (as 16T1291)
|
| Inertia group: |
Intransitive group isomorphic to $Q_8:\SL(2,3)$
|
| Wild inertia group: |
$Q_8^2$
|
| Galois unramified degree: |
$6$
|
| Galois tame degree: |
$3$
|
| Galois Artin slopes: |
$[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 2, 2]$
|
| Galois Swan slopes: |
$[\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},1,1]$
|
| Galois mean slope: |
$1.8229166666666667$
|
| Galois splitting model: |
$x^{16} - 12 x^{12} - 20 x^{10} + 156 x^{8} - 528 x^{6} + 1216 x^{4} - 768 x^{2} + 144$
|