Properties

Label 2.2.8.24b4.1
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(24\)
Galois group $\SL(2,3)\wr C_2$ (as 16T1291)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{4}{3}, 2]$
Visible Swan slopes:$[\frac{1}{3},\frac{1}{3},1]$
Means:$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$
Rams:$(\frac{1}{3}, \frac{1}{3}, 3)$
Jump set:$[1, 2, 5, 13]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.4.8a2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 2 t x^{5} + 2 t x^{2} + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + t$,$t z + t$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 2, 0]$

Invariants of the Galois closure

Galois degree: $1152$
Galois group: $\SL(2,3)\wr C_2$ (as 16T1291)
Inertia group: Intransitive group isomorphic to $Q_8:\SL(2,3)$
Wild inertia group: $Q_8^2$
Galois unramified degree: $6$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 2, 2]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},1,1]$
Galois mean slope: $1.8229166666666667$
Galois splitting model: $x^{16} - 12 x^{12} - 20 x^{10} + 156 x^{8} - 528 x^{6} + 1216 x^{4} - 768 x^{2} + 144$ Copy content Toggle raw display