Show commands: Magma
Group invariants
| Abstract group: | $\SL(2,3)\wr C_2$ |
| |
| Order: | $1152=2^{7} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $1291$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,12,2,11)(3,9,7,16,5,14,4,10,8,15,6,13)$, $(3,5,8)(4,6,7)(9,15,10,16)(11,13,12,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ $288$: $A_4\wr C_2$ $576$: 24T1482 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 8: $A_4\wr C_2$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
| 2C | $2^{8}$ | $24$ | $2$ | $8$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| 3A1 | $3^{2},1^{10}$ | $8$ | $3$ | $4$ | $(1,4,5)(2,3,6)$ |
| 3A-1 | $3^{2},1^{10}$ | $8$ | $3$ | $4$ | $(1,5,4)(2,6,3)$ |
| 3B1 | $3^{4},1^{4}$ | $16$ | $3$ | $8$ | $( 1, 4, 5)( 2, 3, 6)(11,14,16)(12,13,15)$ |
| 3B-1 | $3^{4},1^{4}$ | $16$ | $3$ | $8$ | $( 1, 5, 4)( 2, 6, 3)(11,16,14)(12,15,13)$ |
| 3C | $3^{4},1^{4}$ | $32$ | $3$ | $8$ | $( 1, 5, 4)( 2, 6, 3)(11,14,16)(12,13,15)$ |
| 4A | $4^{2},1^{8}$ | $12$ | $4$ | $6$ | $( 9,16,10,15)(11,14,12,13)$ |
| 4B | $4^{2},2^{4}$ | $12$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,16,10,15)(11,14,12,13)$ |
| 4C | $4^{4}$ | $24$ | $4$ | $12$ | $( 1,12, 2,11)( 3,15, 4,16)( 5, 9, 6,10)( 7,13, 8,14)$ |
| 4D | $4^{4}$ | $36$ | $4$ | $12$ | $( 1, 7, 2, 8)( 3, 5, 4, 6)( 9,16,10,15)(11,14,12,13)$ |
| 6A1 | $6,2,1^{8}$ | $8$ | $6$ | $6$ | $(1,6,4,2,5,3)(7,8)$ |
| 6A-1 | $6,2,1^{8}$ | $8$ | $6$ | $6$ | $(1,3,5,2,4,6)(7,8)$ |
| 6B1 | $6,2^{5}$ | $8$ | $6$ | $10$ | $( 1, 6, 4, 2, 5, 3)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 6B-1 | $6,2^{5}$ | $8$ | $6$ | $10$ | $( 1, 3, 5, 2, 4, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 6C1 | $3^{2},2^{4},1^{2}$ | $8$ | $6$ | $8$ | $( 3, 8, 5)( 4, 7, 6)( 9,10)(11,12)(13,14)(15,16)$ |
| 6C-1 | $3^{2},2^{4},1^{2}$ | $8$ | $6$ | $8$ | $( 3, 5, 8)( 4, 6, 7)( 9,10)(11,12)(13,14)(15,16)$ |
| 6D1 | $6^{2},2^{2}$ | $16$ | $6$ | $12$ | $( 1, 6, 4, 2, 5, 3)( 7, 8)( 9,15,12,10,16,11)(13,14)$ |
| 6D-1 | $6^{2},2^{2}$ | $16$ | $6$ | $12$ | $( 1, 3, 5, 2, 4, 6)( 7, 8)( 9,11,16,10,12,15)(13,14)$ |
| 6E | $6^{2},2^{2}$ | $32$ | $6$ | $12$ | $( 1, 3, 5, 2, 4, 6)( 7, 8)( 9,10)(11,15,14,12,16,13)$ |
| 6F1 | $6,3^{2},2,1^{2}$ | $32$ | $6$ | $10$ | $( 1, 6, 4, 2, 5, 3)( 7, 8)(11,16,14)(12,15,13)$ |
| 6F-1 | $6,3^{2},2,1^{2}$ | $32$ | $6$ | $10$ | $( 1, 3, 5, 2, 4, 6)( 7, 8)(11,14,16)(12,13,15)$ |
| 6G1 | $6,3^{2},2,1^{2}$ | $32$ | $6$ | $10$ | $( 1, 3, 5, 2, 4, 6)( 7, 8)(11,16,14)(12,15,13)$ |
| 6G-1 | $6,3^{2},2,1^{2}$ | $32$ | $6$ | $10$ | $( 1, 6, 4, 2, 5, 3)( 7, 8)(11,14,16)(12,13,15)$ |
| 6H1 | $6^{2},2^{2}$ | $96$ | $6$ | $12$ | $( 1,15, 6,12, 8,13)( 2,16, 5,11, 7,14)( 3, 9)( 4,10)$ |
| 6H-1 | $6^{2},2^{2}$ | $96$ | $6$ | $12$ | $( 1,13, 8,12, 6,15)( 2,14, 7,11, 5,16)( 3, 9)( 4,10)$ |
| 8A | $8^{2}$ | $144$ | $8$ | $14$ | $( 1,12, 7,13, 2,11, 8,14)( 3,15, 5, 9, 4,16, 6,10)$ |
| 12A1 | $4^{2},3^{2},1^{2}$ | $48$ | $12$ | $10$ | $( 3, 5, 8)( 4, 6, 7)( 9,15,10,16)(11,13,12,14)$ |
| 12A-1 | $4^{2},3^{2},1^{2}$ | $48$ | $12$ | $10$ | $( 3, 8, 5)( 4, 7, 6)( 9,16,10,15)(11,14,12,13)$ |
| 12B1 | $6,4^{2},2$ | $48$ | $12$ | $12$ | $( 1, 3, 5, 2, 4, 6)( 7, 8)( 9,15,10,16)(11,13,12,14)$ |
| 12B-1 | $6,4^{2},2$ | $48$ | $12$ | $12$ | $( 1, 6, 4, 2, 5, 3)( 7, 8)( 9,16,10,15)(11,14,12,13)$ |
| 12C1 | $12,4$ | $96$ | $12$ | $14$ | $( 1,15, 6,12, 4,10, 2,16, 5,11, 3, 9)( 7,14, 8,13)$ |
| 12C-1 | $12,4$ | $96$ | $12$ | $14$ | $( 1, 9, 3,11, 5,16, 2,10, 4,12, 6,15)( 7,13, 8,14)$ |
Malle's constant $a(G)$: $1/4$
Character table
35 x 35 character table
Regular extensions
Data not computed