Properties

Label 16T1291
Order \(1152\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1291$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,2,11)(3,9,7,16,5,14,4,10,8,15,6,13), (3,5,8)(4,6,7)(9,15,10,16)(11,13,12,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $S_3$, $C_6$
18:  $S_3\times C_3$
288:  $A_4\wr C_2$
576:  24T1482

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 8: $A_4\wr C_2$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 9,10)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ $12$ $4$ $( 9,14,10,13)(11,15,12,16)$
$ 4, 4, 2, 2, 2, 2 $ $12$ $4$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,14,10,13)(11,15,12,16)$
$ 4, 4, 4, 4 $ $36$ $4$ $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14,10,13)(11,15,12,16)$
$ 3, 3, 3, 3, 1, 1, 1, 1 $ $16$ $3$ $( 3, 5, 8)( 4, 6, 7)(11,16,14)(12,15,13)$
$ 6, 3, 3, 2, 1, 1 $ $32$ $6$ $( 3, 5, 8)( 4, 6, 7)( 9,10)(11,15,14,12,16,13)$
$ 6, 6, 2, 2 $ $16$ $6$ $( 1, 2)( 3, 6, 8, 4, 5, 7)( 9,10)(11,15,14,12,16,13)$
$ 3, 3, 3, 3, 1, 1, 1, 1 $ $16$ $3$ $( 3, 8, 5)( 4, 7, 6)(11,14,16)(12,13,15)$
$ 6, 3, 3, 2, 1, 1 $ $32$ $6$ $( 3, 8, 5)( 4, 7, 6)( 9,10)(11,13,16,12,14,15)$
$ 6, 6, 2, 2 $ $16$ $6$ $( 1, 2)( 3, 7, 5, 4, 8, 6)( 9,10)(11,13,16,12,14,15)$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $8$ $3$ $(11,14,16)(12,13,15)$
$ 6, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $8$ $6$ $( 9,10)(11,13,16,12,14,15)$
$ 3, 3, 2, 2, 2, 2, 1, 1 $ $8$ $6$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(11,14,16)(12,13,15)$
$ 6, 2, 2, 2, 2, 2 $ $8$ $6$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,13,16,12,14,15)$
$ 4, 4, 3, 3, 1, 1 $ $48$ $12$ $( 1, 6, 2, 5)( 3, 7, 4, 8)(11,14,16)(12,13,15)$
$ 6, 4, 4, 2 $ $48$ $12$ $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,10)(11,13,16,12,14,15)$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $8$ $3$ $( 3, 5, 8)( 4, 6, 7)$
$ 3, 3, 2, 2, 2, 2, 1, 1 $ $8$ $6$ $( 3, 5, 8)( 4, 6, 7)( 9,10)(11,12)(13,14)(15,16)$
$ 6, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $8$ $6$ $( 1, 2)( 3, 6, 8, 4, 5, 7)$
$ 6, 2, 2, 2, 2, 2 $ $8$ $6$ $( 1, 2)( 3, 6, 8, 4, 5, 7)( 9,10)(11,12)(13,14)(15,16)$
$ 4, 4, 3, 3, 1, 1 $ $48$ $12$ $( 3, 5, 8)( 4, 6, 7)( 9,14,10,13)(11,15,12,16)$
$ 6, 4, 4, 2 $ $48$ $12$ $( 1, 2)( 3, 6, 8, 4, 5, 7)( 9,14,10,13)(11,15,12,16)$
$ 3, 3, 3, 3, 1, 1, 1, 1 $ $32$ $3$ $( 3, 8, 5)( 4, 7, 6)(11,16,14)(12,15,13)$
$ 6, 3, 3, 2, 1, 1 $ $32$ $6$ $( 3, 8, 5)( 4, 7, 6)( 9,10)(11,15,14,12,16,13)$
$ 6, 3, 3, 2, 1, 1 $ $32$ $6$ $( 1, 2)( 3, 7, 5, 4, 8, 6)(11,16,14)(12,15,13)$
$ 6, 6, 2, 2 $ $32$ $6$ $( 1, 2)( 3, 7, 5, 4, 8, 6)( 9,10)(11,15,14,12,16,13)$
$ 12, 4 $ $96$ $12$ $( 1,12, 2,11)( 3, 9, 7,16, 5,14, 4,10, 8,15, 6,13)$
$ 6, 6, 2, 2 $ $96$ $6$ $( 1,11)( 2,12)( 3,10, 8,16, 5,13)( 4, 9, 7,15, 6,14)$
$ 12, 4 $ $96$ $12$ $( 1,15, 7,14, 6,12, 2,16, 8,13, 5,11)( 3, 9, 4,10)$
$ 6, 6, 2, 2 $ $96$ $6$ $( 1,16, 8,14, 6,11)( 2,15, 7,13, 5,12)( 3,10)( 4, 9)$
$ 8, 8 $ $144$ $8$ $( 1,13, 8,12, 2,14, 7,11)( 3, 9, 6,15, 4,10, 5,16)$
$ 4, 4, 4, 4 $ $24$ $4$ $( 1, 9, 2,10)( 3,14, 4,13)( 5,11, 6,12)( 7,15, 8,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $24$ $2$ $( 1,10)( 2, 9)( 3,13)( 4,14)( 5,12)( 6,11)( 7,16)( 8,15)$

Group invariants

Order:  $1152=2^{7} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.