Properties

Label 2.2.8.24b2.2
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(24\)
Galois group $C_2^4.\GL(2,3)$ (as 16T1069)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{2} + 6$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{4}{3}, 2]$
Visible Swan slopes:$[\frac{1}{3},\frac{1}{3},1]$
Means:$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$
Rams:$(\frac{1}{3}, \frac{1}{3}, 3)$
Jump set:$[1, 2, 5, 13]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.1.4.4a1.1, 2.2.4.8a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + \left(2 t + 2\right) x^{7} + 2 t x^{5} + 2 x^{2} + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + t$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 2, 0]$

Invariants of the Galois closure

Galois degree: $768$
Galois group: $C_2^4.\GL(2,3)$ (as 16T1069)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $4$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 2, 2]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},1,1]$
Galois mean slope: $1.8229166666666667$
Galois splitting model:not computed