Properties

Label 2.2.4.20a1.17
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(20\)
Galois group $C_2^3: C_4$ (as 8T20)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 8 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}]$
Visible Swan slopes:$[2,\frac{5}{2}]$
Means:$\langle1, \frac{7}{4}\rangle$
Rams:$(2, 3)$
Jump set:$[1, 3, 7]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.6a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 4 x^{3} + 4 x^{2} + 8 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[7, 4, 0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $C_2^3:C_4$ (as 8T20)
Inertia group: Intransitive group isomorphic to $C_2\times D_4$
Wild inertia group: $C_2\times D_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2}]$
Galois mean slope: $2.875$
Galois splitting model:$x^{8} - 6 x^{6} + x^{4} + 14 x^{2} + 1$