Properties

Label 2.2.4.18a2.5
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(18\)
Galois group $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{4} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, \frac{7}{2}]$
Visible Swan slopes:$[1,\frac{5}{2}]$
Means:$\langle\frac{1}{2}, \frac{3}{2}\rangle$
Rams:$(1, 4)$
Jump set:$[1, 3, 7]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.4a2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 4 x^{3} + \left(2 t + 8\right) x^{2} + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + t$,$t z + t$
Associated inertia:$1$,$1$
Indices of inseparability:$[6, 2, 0]$

Invariants of the Galois closure

Galois degree: $64$
Galois group: $C_2\wr C_4$ (as 8T28)
Inertia group: Intransitive group isomorphic to $C_2^2\wr C_2$
Wild inertia group: $C_2^2\wr C_2$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2}]$
Galois mean slope: $3.1875$
Galois splitting model:$x^{8} + 10 x^{6} + 30 x^{4} + 40 x^{2} + 20$