Properties

Label 2.12.28.243
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(28\)
Galois group $C_2^2\times S_4$ (as 12T48)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 6 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $28$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $4$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[8/3, 3]$

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.3.2.1, 2.6.10.6, 2.6.11.4, 2.6.11.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 6 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$,$z^{8} + z^{4} + 1$
Associated inertia:$1$,$1$,$2$
Indices of inseparability:$[17, 10, 0]$

Invariants of the Galois closure

Galois group:$C_2^2\times S_4$ (as 12T48)
Inertia group:$C_2^2\times A_4$ (as 12T25)
Wild inertia group:$C_2^4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[2, 8/3, 8/3, 3]$
Galois mean slope:$8/3$
Galois splitting model: $x^{12} + 4 x^{10} - 12 x^{9} + 15 x^{8} - 24 x^{7} + 56 x^{6} - 92 x^{5} + 101 x^{4} - 72 x^{3} + 32 x^{2} - 8 x + 1$ Copy content Toggle raw display