Properties

Label 2.12.26.45
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(26\)
Galois group $S_3 \times C_2^2$ (as 12T10)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 4 x^{11} + 2 x^{10} + 6 x^{8} + 2 x^{6} + 4 x^{5} + 4 x^{3} + 4 x^{2} + 14\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $26$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $4$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 3]$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{-2\cdot 5})$, 2.3.2.1, 2.4.8.3, 2.6.8.3, 2.6.11.1, 2.6.11.13

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 4 x^{11} + 2 x^{10} + 6 x^{8} + 2 x^{6} + 4 x^{5} + 4 x^{3} + 4 x^{2} + 14 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$,$z^{8} + z^{4} + 1$
Associated inertia:$1$,$1$,$2$
Indices of inseparability:$[15, 6, 0]$

Invariants of the Galois closure

Galois group:$C_2\times D_6$ (as 12T10)
Inertia group:$C_2\times C_6$ (as 12T2)
Wild inertia group:$C_2^2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[2, 3]$
Galois mean slope:$13/6$
Galois splitting model:$x^{12} - 4 x^{10} + 7 x^{8} - 4 x^{6} - 21 x^{4} - 8 x^{2} + 1$