Properties

Label 2.12.24.3
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group $C_2^3.(C_2\times A_4)$ (as 12T104)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} - 8 x^{9} + 6 x^{8} - 16 x^{7} + 320 x^{6} + 448 x^{5} + 548 x^{4} - 32 x^{3} + 528 x^{2} + 248\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 3]$

Intermediate fields

2.3.0.1, 2.6.6.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(6 t^{2} + 4\right) x^{2} + 4 t^{2} x + 4 t + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$t^{2}z + t^{2}$,$z^{2} + t^{2}$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 0]$

Invariants of the Galois closure

Galois group:$C_2^3.(C_2\times A_4)$ (as 12T104)
Inertia group:Intransitive group isomorphic to $C_2^3:D_4$
Wild inertia group:$C_2^3:D_4$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:$[2, 2, 2, 3, 3, 3]$
Galois mean slope:$91/32$
Galois splitting model: $x^{12} - 39 x^{8} - 286 x^{6} - 624 x^{4} - 364 x^{2} - 13$ Copy content Toggle raw display