Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $104$ | |
| Group : | $(C_2^2.\SL(2,3)):C_2$ | |
| CHM label : | $[(1/2.2^{2})^{3}]2A_{4}(6)_{8}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (6,7)(8,10)(9,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ 24: $A_4\times C_2$ 48: 16T60 96: 12T60 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4\times C_2$
Low degree siblings
12T104 x 3, 24T496 x 2, 24T497 x 2, 24T498 x 2, 24T499 x 4, 24T500 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 8, 9)(10,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 6, 7)( 8,10)( 9,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 4, 6)( 5, 7)( 8, 9)(10,11)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $12$ | $4$ | $( 2, 3)( 4, 6, 5, 7)( 8,10)( 9,11)$ |
| $ 4, 2, 2, 2, 1, 1 $ | $12$ | $4$ | $( 2, 3)( 4, 6, 5, 7)( 8,11)( 9,10)$ |
| $ 4, 4, 4 $ | $4$ | $4$ | $( 1, 2,12, 3)( 4, 6, 5, 7)( 8,10, 9,11)$ |
| $ 4, 4, 4 $ | $4$ | $4$ | $( 1, 2,12, 3)( 4, 6, 5, 7)( 8,11, 9,10)$ |
| $ 12 $ | $16$ | $12$ | $( 1, 4,10, 3, 7, 9,12, 5,11, 2, 6, 8)$ |
| $ 12 $ | $16$ | $12$ | $( 1, 4,10, 2, 6, 8,12, 5,11, 3, 7, 9)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 4,10,12, 5,11)( 2, 6, 9, 3, 7, 8)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 4,10)( 2, 6, 9)( 3, 7, 8)( 5,11,12)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 8, 6)( 2,10, 4)( 3,11, 5)( 7,12, 9)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 8, 7,12, 9, 6)( 2,10, 5, 3,11, 4)$ |
| $ 12 $ | $16$ | $12$ | $( 1, 8, 4, 2,10, 6,12, 9, 5, 3,11, 7)$ |
| $ 12 $ | $16$ | $12$ | $( 1, 8, 5, 3,11, 6,12, 9, 4, 2,10, 7)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 194] |
| Character table: |
2 6 6 4 6 4 4 4 4 4 2 2 2 2 2 2 2 2 6
3 1 . . . . . . 1 1 1 1 1 1 1 1 1 1 1
1a 2a 2b 2c 2d 4a 4b 4c 4d 12a 12b 6a 3a 3b 6b 12c 12d 2e
2P 1a 1a 1a 1a 1a 2a 2a 2e 2e 6b 6b 3b 3b 3a 3a 6a 6a 1a
3P 1a 2a 2b 2c 2d 4a 4b 4d 4c 4c 4d 2e 1a 1a 2e 4c 4d 2e
5P 1a 2a 2b 2c 2d 4a 4b 4c 4d 12c 12d 6b 3b 3a 6a 12a 12b 2e
7P 1a 2a 2b 2c 2d 4a 4b 4d 4c 12b 12a 6a 3a 3b 6b 12d 12c 2e
11P 1a 2a 2b 2c 2d 4a 4b 4d 4c 12d 12c 6b 3b 3a 6a 12b 12a 2e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1
X.3 1 1 -1 1 -1 1 1 -1 -1 B B -B -B -/B -/B /B /B 1
X.4 1 1 -1 1 -1 1 1 -1 -1 /B /B -/B -/B -B -B B B 1
X.5 1 1 1 1 1 1 1 1 1 -/B -/B -/B -/B -B -B -B -B 1
X.6 1 1 1 1 1 1 1 1 1 -B -B -B -B -/B -/B -/B -/B 1
X.7 2 -2 . 2 . . . A -A C -C 1 -1 -1 1 C -C -2
X.8 2 -2 . 2 . . . -A A -C C 1 -1 -1 1 -C C -2
X.9 2 -2 . 2 . . . A -A D -D -/B /B B -B -/D /D -2
X.10 2 -2 . 2 . . . A -A -/D /D -B B /B -/B D -D -2
X.11 2 -2 . 2 . . . -A A -D D -/B /B B -B /D -/D -2
X.12 2 -2 . 2 . . . -A A /D -/D -B B /B -/B -D D -2
X.13 3 3 -1 3 -1 -1 -1 3 3 . . . . . . . . 3
X.14 3 3 1 3 1 -1 -1 -3 -3 . . . . . . . . 3
X.15 6 -2 . -2 . -2 2 . . . . . . . . . . 6
X.16 6 -2 . -2 . 2 -2 . . . . . . . . . . 6
X.17 6 2 -2 -2 2 . . . . . . . . . . . . -6
X.18 6 2 2 -2 -2 . . . . . . . . . . . . -6
A = -2*E(4)
= -2*Sqrt(-1) = -2i
B = -E(3)
= (1-Sqrt(-3))/2 = -b3
C = -E(4)
= -Sqrt(-1) = -i
D = -E(12)^11
|