Properties

Label 2.12.24.250
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(24\)
Galois group $C_2^4.A_4$ (as 12T92)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 12 x^{11} + 58 x^{10} + 116 x^{9} + 374 x^{8} + 648 x^{7} + 1472 x^{6} + 1584 x^{5} + 3036 x^{4} + 2816 x^{3} + 3112 x^{2} + 1776 x + 2088\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 3]$

Intermediate fields

2.3.0.1, 2.6.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(4 t + 4\right) x^{3} + \left(6 t^{2} + 2 t + 2\right) x^{2} + \left(4 t + 4\right) x + 8 t^{2} + 8 t + 10 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$(t^{2} + t + 1)z + t + 1$,$z^{2} + t^{2} + t + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 0]$

Invariants of the Galois closure

Galois group:$C_2^4.A_4$ (as 12T92)
Inertia group:Intransitive group isomorphic to $C_2\times C_4^2$
Wild inertia group:$C_2\times C_4^2$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:$[2, 2, 3, 3, 3]$
Galois mean slope:$45/16$
Galois splitting model:$x^{12} - 9 x^{8} + 20 x^{6} - 24 x^{4} + 18 x^{2} - 3$