Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $92$ | |
| Group : | $C_2\times C_4:D_4:C_3$ | |
| CHM label : | $[2^{4}]A_{4}(6)_{4}{n4}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3)(4,5), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,12)(6,7), (2,8)(3,9)(4,10)(5,11)(6,7) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $C_6$ x 3 12: $A_4$, $C_6\times C_2$ 24: $A_4\times C_2$ x 3 48: $C_2^2 \times A_4$ 96: 12T60 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4$
Low degree siblings
12T89 x 2, 12T92, 24T453 x 2, 24T454 x 2, 24T455 x 4, 24T456 x 4, 24T463, 24T464, 24T465 x 4, 24T466 x 4, 32T2188 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)(10,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 4, 5)( 8, 9)(10,11)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 8, 3, 9)( 4,10, 5,11)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 2, 8)( 3, 9)( 4,10)( 5,11)( 6, 7)$ |
| $ 4, 4, 1, 1, 1, 1 $ | $6$ | $4$ | $( 2, 8, 3, 9)( 4,11, 5,10)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 2, 8)( 3, 9)( 4,11)( 5,10)( 6, 7)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 2, 4)( 3, 5,12)( 6, 8,11)( 7, 9,10)$ |
| $ 6, 3, 3 $ | $16$ | $6$ | $( 1, 2, 4)( 3, 5,12)( 6, 9,11, 7, 8,10)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 2, 4,12, 3, 5)( 6, 8,11, 7, 9,10)$ |
| $ 6, 3, 3 $ | $16$ | $6$ | $( 1, 2, 4,12, 3, 5)( 6, 9,11)( 7, 8,10)$ |
| $ 6, 3, 3 $ | $16$ | $6$ | $( 1, 4, 2)( 3,12, 5)( 6,10, 8, 7,11, 9)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 4, 2)( 3,12, 5)( 6,11, 8)( 7,10, 9)$ |
| $ 6, 3, 3 $ | $16$ | $6$ | $( 1, 4, 3,12, 5, 2)( 6,10, 9)( 7,11, 8)$ |
| $ 6, 6 $ | $16$ | $6$ | $( 1, 4, 3,12, 5, 2)( 6,11, 9, 7,10, 8)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 6,12, 7)( 2, 3)( 4,10, 5,11)( 8, 9)$ |
| $ 4, 4, 2, 2 $ | $6$ | $4$ | $( 1, 6,12, 7)( 2, 3)( 4,11, 5,10)( 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $192=2^{6} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [192, 1002] |
| Character table: |
2 6 4 6 4 6 5 4 5 4 2 2 2 2 2 2 2 2 5 5 6
3 1 1 . 1 . . . . . 1 1 1 1 1 1 1 1 . . 1
1a 2a 2b 2c 2d 4a 2e 4b 2f 3a 6a 6b 6c 6d 3b 6e 6f 4c 4d 2g
2P 1a 1a 1a 1a 1a 2d 1a 2d 1a 3b 3b 3b 3b 3a 3a 3a 3a 2d 2d 1a
3P 1a 2a 2b 2c 2d 4a 2e 4b 2f 1a 2a 2g 2c 2a 1a 2c 2g 4c 4d 2g
5P 1a 2a 2b 2c 2d 4a 2e 4b 2f 3b 6d 6f 6e 6a 3a 6c 6b 4c 4d 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1
X.3 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 1 1
X.4 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1
X.5 1 -1 -1 1 1 1 -1 -1 1 A -A -A A -/A /A /A -/A -1 1 -1
X.6 1 -1 -1 1 1 1 -1 -1 1 /A -/A -/A /A -A A A -A -1 1 -1
X.7 1 -1 1 -1 1 1 -1 1 -1 A -A A -A -/A /A -/A /A 1 1 1
X.8 1 -1 1 -1 1 1 -1 1 -1 /A -/A /A -/A -A A -A A 1 1 1
X.9 1 1 -1 -1 1 1 1 -1 -1 A A -A -A /A /A -/A -/A -1 1 -1
X.10 1 1 -1 -1 1 1 1 -1 -1 /A /A -/A -/A A A -A -A -1 1 -1
X.11 1 1 1 1 1 1 1 1 1 A A A A /A /A /A /A 1 1 1
X.12 1 1 1 1 1 1 1 1 1 /A /A /A /A A A A A 1 1 1
X.13 3 -3 -3 3 3 -1 1 1 -1 . . . . . . . . 1 -1 -3
X.14 3 -3 3 -3 3 -1 1 -1 1 . . . . . . . . -1 -1 3
X.15 3 3 -3 -3 3 -1 -1 1 1 . . . . . . . . 1 -1 -3
X.16 3 3 3 3 3 -1 -1 -1 -1 . . . . . . . . -1 -1 3
X.17 6 . -2 . -2 -2 . 2 . . . . . . . . . -2 2 6
X.18 6 . -2 . -2 2 . -2 . . . . . . . . . 2 -2 6
X.19 6 . 2 . -2 -2 . -2 . . . . . . . . . 2 2 -6
X.20 6 . 2 . -2 2 . 2 . . . . . . . . . -2 -2 -6
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|