Properties

Label 2.12.22.74
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(22\)
Galois group $A_4^2:C_2^2$ (as 12T158)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 4 x^{11} + 28 x^{10} + 20 x^{9} + 56 x^{8} - 12 x^{7} + 74 x^{6} + 104 x^{5} + 32 x^{4} + 88 x^{3} + 20 x^{2} + 88 x + 148\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[3]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.6.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + \left(4 t + 4\right) x^{5} + 6 x^{4} + 4 t x^{3} + 2 x^{2} + \left(4 t + 4\right) x + 14 t + 8 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t + 1$,$z^{4} + z^{2} + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[6, 0]$

Invariants of the Galois closure

Galois group:$A_4^2:C_2^2$ (as 12T158)
Inertia group:Intransitive group isomorphic to $C_2^3:A_4$
Wild inertia group:$C_2^5$
Unramified degree:$6$
Tame degree:$3$
Wild slopes:$[4/3, 4/3, 4/3, 4/3, 3]$
Galois mean slope:$103/48$
Galois splitting model: $x^{12} - 24 x^{8} + 14 x^{6} + 144 x^{4} - 168 x^{2} + 4$ Copy content Toggle raw display