Properties

Label 2.10.2.30a1.4
Base \(\Q_{2}\)
Degree \(20\)
e \(2\)
f \(10\)
c \(30\)
Galois group $C_2^{10}.C_{10}$ (as 20T409)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{10} + x^{6} + x^{5} + x^{3} + x^{2} + x + 1 )^{2} + 4 x^{7} ( x^{10} + x^{6} + x^{5} + x^{3} + x^{2} + x + 1 ) + 8 x^{5} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $20$
Ramification index $e$: $2$
Residue field degree $f$: $10$
Discriminant exponent $c$: $30$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3]$
Visible Swan slopes:$[2]$
Means:$\langle1\rangle$
Rams:$(2)$
Jump set:$[1, 3]$
Roots of unity:$2046 = (2^{ 10 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.5.1.0a1.1, 2.10.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.10.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{10} + x^{6} + x^{5} + x^{3} + x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + \left(4 t^{7} + 4 t^{4} + 4 t^{3} + 4 t + 4\right) x + 8 t^{5} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (t^8 + t^4 + 1)$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois degree: $10240$
Galois group: $C_2^{10}.C_{10}$ (as 20T409)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed