Properties

Label 2.10.1.0a1.1
Base \(\Q_{2}\)
Degree \(10\)
e \(1\)
f \(10\)
c \(0\)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{10} + x^{6} + x^{5} + x^{3} + x^{2} + x + 1\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $10$
Ramification index $e$: $1$
Residue field degree $f$: $10$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $C_{10}$
This field is Galois and abelian over $\Q_{2}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:$[1]$
Roots of unity:$2046 = (2^{ 10 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.5.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.10.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{10} + x^{6} + x^{5} + x^{3} + x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $10$
Galois group: $C_{10}$ (as 10T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $10$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$