Defining polynomial
|
\(x^{8} + 4 x^{6} + 8 x^{5} + 24 x^{4} + 2\)
|
Invariants
| Base field: | $\Q_{2}$ |
| Degree $d$: | $8$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $28$ |
| Discriminant root field: | $\Q_{2}(\sqrt{-1})$ |
| Root number: | $-i$ |
| $\Aut(K/\Q_{2})$: | $C_2$ |
| This field is not Galois over $\Q_{2}.$ | |
| Visible Artin slopes: | $[3, \frac{7}{2}, \frac{9}{2}]$ |
| Visible Swan slopes: | $[2,\frac{5}{2},\frac{7}{2}]$ |
| Means: | $\langle1, \frac{7}{4}, \frac{21}{8}\rangle$ |
| Rams: | $(2, 3, 7)$ |
| Jump set: | $[1, 3, 7, 15]$ |
| Roots of unity: | $2$ |
Intermediate fields
| $\Q_{2}(\sqrt{2})$, 2.1.4.10a1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{2}$ |
| Relative Eisenstein polynomial: |
\( x^{8} + 4 x^{6} + 8 x^{5} + 24 x^{4} + 2 \)
|
Ramification polygon
| Residual polynomials: | $z^4 + 1$,$z^2 + 1$,$z + 1$ |
| Associated inertia: | $1$,$1$,$1$ |
| Indices of inseparability: | $[21, 14, 8, 0]$ |
Invariants of the Galois closure
| Galois degree: | $64$ |
| Galois group: | $D_4:D_4$ (as 8T26) |
| Inertia group: | $D_8:C_2$ (as 8T15) |
| Wild inertia group: | $D_8:C_2$ |
| Galois unramified degree: | $2$ |
| Galois tame degree: | $1$ |
| Galois Artin slopes: | $[2, 2, 3, \frac{7}{2}, \frac{9}{2}]$ |
| Galois Swan slopes: | $[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
| Galois mean slope: | $3.6875$ |
| Galois splitting model: | $x^{8} + 8 x^{6} + 14 x^{4} - 8 x^{2} - 49$ |