| \(x^{8} + 2 x^{4} + 8 x^{3} + 2\) ![Copy content]()  ![Toggle raw display]()  | 
  | Base field: | $\Q_{2}$ | 
| Degree $d$: | $8$ | 
      | Ramification index $e$: | $8$ | 
      | Residue field degree $f$: | $1$ | 
      | Discriminant exponent $c$: | $26$ | 
      | Discriminant root field: | $\Q_{2}(\sqrt{5})$ | 
      | Root number: | $-1$ | 
        | $\Aut(K/\Q_{2})$: | $C_2$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[2, \frac{7}{2}, \frac{17}{4}]$ | 
      | Visible Swan slopes: | $[1,\frac{5}{2},\frac{13}{4}]$ | 
      | Means: | $\langle\frac{1}{2}, \frac{3}{2}, \frac{19}{8}\rangle$ | 
      | Rams: | $(1, 4, 7)$ | 
      | Jump set: | $[1, 5, 13, 21]$ | 
      | Roots of unity: | $4 = 2^{ 2 }$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
       
    
  
  | Galois degree: | $128$ | 
  | Galois group: | $C_2\wr D_4$ (as 8T35) | 
  | Inertia group: | $C_2\wr C_2^2$ (as 8T29) | 
  | Wild inertia group: | $C_2\wr C_2^2$ | 
  | Galois unramified degree: | $2$ | 
  | Galois tame degree: | $1$ | 
  | Galois Artin slopes: | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ | 
| Galois Swan slopes: | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]$ | 
  | Galois mean slope: | $3.84375$ | 
  | Galois splitting model: | $x^{8} + 8 x^{4} - 4 x^{2} + 5$ |