\(x^{8} + 12 x^{6} + 2 x^{4} + 8 x + 2\)
    
    
    
         
    
    
         
    
  | 
  | Base field: |   $\Q_{2}$
       | 
| Degree $d$: |  $8$ | 
      | Ramification index $e$: |  $8$ | 
      | Residue field degree $f$: |  $1$ | 
      | Discriminant exponent $c$: |  $24$ | 
      | Discriminant root field: |  $\Q_{2}(\sqrt{5})$ | 
      | Root number: |  $1$ | 
        | $\Aut(K/\Q_{2})$:
             |  
      $C_2$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[2, \frac{7}{2}, \frac{15}{4}]$ | 
      | Visible Swan slopes: | $[1,\frac{5}{2},\frac{11}{4}]$ | 
      | Means: | $\langle\frac{1}{2}, \frac{3}{2}, \frac{17}{8}\rangle$ | 
      | Rams: | $(1, 4, 5)$ | 
      | Jump set: | $[1, 5, 13, 21]$ | 
      | Roots of unity: | $4 = 2^{ 2 }$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
      
    
  
  | Galois degree: | 
      $128$
     | 
  | Galois group: | 
      $C_2\wr D_4$ (as 8T35)
     | 
  | Inertia group: | 
      $C_2\wr C_2^2$ (as 8T29)
     | 
  | Wild inertia group: | 
    $C_2\wr C_2^2$
     | 
  | Galois unramified degree: | 
    $2$
     | 
  | Galois tame degree: | 
    $1$
     | 
  | Galois Artin slopes: | 
    $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]$
     | 
| Galois Swan slopes: | 
    $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]$
     | 
  | Galois mean slope: | 
    $3.46875$
     | 
  | Galois splitting model: | $x^{8} + 30 x^{4} - 72 x^{2} + 45$ |