Properties

Label 2.1.8.24c1.55
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(24\)
Galois group $Q_8:C_2$ (as 8T11)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 4 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 14\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_4$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, 4]$
Visible Swan slopes:$[1,2,3]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}\rangle$
Rams:$(1, 3, 7)$
Jump set:$[1, 2, 4, 16]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, $\Q_{2}(\sqrt{2})$, 2.1.4.8b1.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 4 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 14 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[17, 10, 4, 0]$

Invariants of the Galois closure

Galois degree: $16$
Galois group: $D_4:C_2$ (as 8T11)
Inertia group: $Q_8$ (as 8T5)
Wild inertia group: $Q_8$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, 4]$
Galois Swan slopes: $[1,2,3]$
Galois mean slope: $3.0$
Galois splitting model:$x^{8} - 4 x^{6} - 4 x^{4} + 4 x^{2} + 1$