Properties

Label 2.1.8.22a1.6
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(22\)
Galois group $\textrm{GL(2,3)}$ (as 8T23)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 8 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{8}{3}, \frac{8}{3}, \frac{7}{2}]$
Visible Swan slopes:$[\frac{5}{3},\frac{5}{3},\frac{5}{2}]$
Means:$\langle\frac{5}{6}, \frac{5}{4}, \frac{15}{8}\rangle$
Rams:$(\frac{5}{3}, \frac{5}{3}, 5)$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$2$

Intermediate fields

2.1.4.8a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 4 x^{7} + 8 x^{4} + 4 x^{2} + 8 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[15, 10, 8, 0]$

Invariants of the Galois closure

Galois degree: $48$
Galois group: $\GL(2,3)$ (as 8T23)
Inertia group: $\SL(2,3)$ (as 8T12)
Wild inertia group: $Q_8$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{8}{3}, \frac{8}{3}, \frac{7}{2}]$
Galois Swan slopes: $[\frac{5}{3},\frac{5}{3},\frac{5}{2}]$
Galois mean slope: $2.8333333333333335$
Galois splitting model:$x^{8} - 8 x^{6} + 18 x^{4} - 3$