Properties

Label 2.1.8.21a1.15
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(21\)
Galois group $C_2 \wr C_2\wr C_2$ (as 8T35)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 4 x^{7} + 2 x^{6} + 8 x^{5} + 8 x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $21$
Discriminant root field: $\Q_{2}(\sqrt{2\cdot 5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, \frac{15}{4}]$
Visible Swan slopes:$[1,1,\frac{11}{4}]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{4}\rangle$
Rams:$(1, 1, 8)$
Jump set:$[1, 3, 11, 19]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.1.4.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 4 x^{7} + 2 x^{6} + 8 x^{5} + 8 x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + 1$,$z + 1$
Associated inertia:$2$,$1$
Indices of inseparability:$[14, 6, 6, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2\wr D_4$ (as 8T35)
Inertia group: $C_2\wr C_2^2$ (as 8T31)
Wild inertia group: $C_2\wr C_2^2$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4}]$
Galois mean slope: $3.46875$
Galois splitting model:$x^{8} - 2 x^{6} + 4 x^{4} + 10$