Defining polynomial
\(x^{8} + 4 x^{7} + 4 x^{5} + 4 x^{2} + 10\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $8$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $20$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[\frac{8}{3}, \frac{8}{3}, 3]$ |
Visible Swan slopes: | $[\frac{5}{3},\frac{5}{3},2]$ |
Means: | $\langle\frac{5}{6}, \frac{5}{4}, \frac{13}{8}\rangle$ |
Rams: | $(\frac{5}{3}, \frac{5}{3}, 3)$ |
Jump set: | $[1, 3, 7, 15]$ |
Roots of unity: | $2$ |
Intermediate fields
$\Q_{2}(\sqrt{2\cdot 5})$, 2.1.4.8a1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{8} + 4 x^{7} + 4 x^{5} + 4 x^{2} + 10 \)
|
Ramification polygon
Residual polynomials: | $z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[13, 10, 8, 0]$ |
Invariants of the Galois closure
Galois degree: | $48$ |
Galois group: | $C_2\times S_4$ (as 8T24) |
Inertia group: | $C_2\times A_4$ (as 8T13) |
Wild inertia group: | $C_2^3$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $3$ |
Galois Artin slopes: | $[\frac{8}{3}, \frac{8}{3}, 3]$ |
Galois Swan slopes: | $[\frac{5}{3},\frac{5}{3},2]$ |
Galois mean slope: | $2.5833333333333335$ |
Galois splitting model: | $x^{8} - 4 x^{7} + 4 x^{6} - 12 x^{5} + 24 x^{4} + 36 x^{2} + 22$ |