Properties

Label 2.1.8.20a1.2
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(20\)
Galois group $C_2^3:(C_7: C_3)$ (as 8T36)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 4 x^{6} + 4 x^{5} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{20}{7}, \frac{20}{7}, \frac{20}{7}]$
Visible Swan slopes:$[\frac{13}{7},\frac{13}{7},\frac{13}{7}]$
Means:$\langle\frac{13}{14}, \frac{39}{28}, \frac{13}{8}\rangle$
Rams:$(\frac{13}{7}, \frac{13}{7}, \frac{13}{7})$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$2$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 2 }$.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 4 x^{6} + 4 x^{5} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$
Associated inertia:$1$
Indices of inseparability:$[13, 13, 8, 0]$

Invariants of the Galois closure

Galois degree: $168$
Galois group: $F_8:C_3$ (as 8T36)
Inertia group: $F_8$ (as 8T25)
Wild inertia group: $C_2^3$
Galois unramified degree: $3$
Galois tame degree: $7$
Galois Artin slopes: $[\frac{20}{7}, \frac{20}{7}, \frac{20}{7}]$
Galois Swan slopes: $[\frac{13}{7},\frac{13}{7},\frac{13}{7}]$
Galois mean slope: $2.607142857142857$
Galois splitting model:$x^{8} - 4 x^{7} + 252 x^{4} - 1624 x^{3} + 5040 x^{2} - 8432 x + 6428$