Defining polynomial
\(x^{8} + 2 x^{5} + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $8$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_1$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}]$ |
Visible Swan slopes: | $[\frac{5}{7},\frac{5}{7},\frac{5}{7}]$ |
Means: | $\langle\frac{5}{14}, \frac{15}{28}, \frac{5}{8}\rangle$ |
Rams: | $(\frac{5}{7}, \frac{5}{7}, \frac{5}{7})$ |
Jump set: | $[1, 3, 6, 13]$ |
Roots of unity: | $2$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 2 }$. |
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{8} + 2 x^{5} + 2 \)
|
Ramification polygon
Residual polynomials: | $z + 1$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[5, 5, 5, 0]$ |
Invariants of the Galois closure
Galois degree: | $168$ |
Galois group: | $F_8:C_3$ (as 8T36) |
Inertia group: | $F_8$ (as 8T25) |
Wild inertia group: | $C_2^3$ |
Galois unramified degree: | $3$ |
Galois tame degree: | $7$ |
Galois Artin slopes: | $[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}]$ |
Galois Swan slopes: | $[\frac{5}{7},\frac{5}{7},\frac{5}{7}]$ |
Galois mean slope: | $1.6071428571428572$ |
Galois splitting model: | $x^{8} - 4 x^{7} + 14 x^{6} - 14 x^{5} + 14 x^{4} + 28 x^{3} + 14 x^{2} - 18 x + 23$ |