Properties

Label 2.1.20.54b1.5138
Base \(\Q_{2}\)
Degree \(20\)
e \(20\)
f \(1\)
c \(54\)
Galois group $C_2^{10}.C_2\wr F_5$ (as 20T946)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{20} + 4 x^{15} + 12 x^{10} + 4 x^{2} + 8 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $20$
Ramification index $e$: $20$
Residue field degree $f$: $1$
Discriminant exponent $c$: $54$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $-i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}]$
Visible Swan slopes:$[2,\frac{5}{2}]$
Means:$\langle1, \frac{7}{4}\rangle$
Rams:$(10, 15)$
Jump set:$[5, 15, 35]$
Roots of unity:$2$

Intermediate fields

2.1.5.4a1.1, 2.1.10.19a1.39

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{20} + 4 x^{15} + 12 x^{10} + 4 x^{2} + 8 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{16} + z^{12} + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$4$,$1$,$1$
Indices of inseparability:$[35, 20, 0]$

Invariants of the Galois closure

Galois degree: $655360$
Galois group: $C_2^{10}.C_2\wr F_5$ (as 20T946)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed