Properties

Label 20T946
Order \(655360\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $946$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,18,16,10,2,17,15,9)(3,4)(5,19,12,7,6,20,11,8), (1,7,16,9,2,8,15,10)(3,4)(5,19,11,17)(6,20,12,18), (1,19,8,15,14,12,10,17,6,4)(2,20,7,16,13,11,9,18,5,3)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $C_4\times C_2$ x 6, $C_2^3$
16:  $C_4\times C_2^2$
20:  $F_5$
40:  $F_{5}\times C_2$ x 3
80:  20T16
320:  $(C_2^4 : C_5):C_4$ x 3
640:  $((C_2^4 : C_5):C_4)\times C_2$ x 9
1280:  20T196 x 3
5120:  20T306
10240:  20T406 x 3
20480:  20T528

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $F_5$

Degree 10: $((C_2^4 : C_5):C_4)\times C_2$

Low degree siblings

20T946 x 15, 40T141739 x 4, 40T141741 x 8, 40T141922 x 4, 40T141925 x 8, 40T142012 x 4, 40T142013 x 4, 40T142014 x 4, 40T142015 x 4, 40T142016 x 8, 40T142017 x 4, 40T142018 x 4, 40T142019 x 8, 40T142498 x 4, 40T142510 x 4, 40T142514 x 4, 40T142526 x 4, 40T142543 x 8, 40T142545 x 8, 40T142547 x 8, 40T142549 x 8, 40T144726 x 4, 40T144740 x 4, 40T144750 x 8, 40T144752 x 8, 40T145486 x 4, 40T145487 x 4, 40T145490 x 8, 40T145491 x 8, 40T146519 x 4, 40T146540 x 4, 40T146564 x 4, 40T146597 x 8, 40T146598 x 8, 40T146605 x 8, 40T146608 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 331 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $655360=2^{17} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.