Properties

Label 2.1.16.72a1.6492
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(72\)
Galois group $C_{16}:C_4$ (as 16T136)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 52 x^{8} + 32 x^{3} + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $72$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}, \frac{9}{2}, \frac{11}{2}]$
Visible Swan slopes:$[2,\frac{5}{2},\frac{7}{2},\frac{9}{2}]$
Means:$\langle1, \frac{7}{4}, \frac{21}{8}, \frac{57}{16}\rangle$
Rams:$(2, 3, 7, 15)$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-2\cdot 5})$, 2.1.4.10a1.7, 2.1.8.28a1.52

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 52 x^{8} + 32 x^{3} + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[57, 42, 28, 16, 0]$

Invariants of the Galois closure

Galois degree: $64$
Galois group: $C_{16}:C_4$ (as 16T136)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $1$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, \frac{7}{2}, 4, \frac{9}{2}, \frac{11}{2}]$
Galois Swan slopes: $[1,2,\frac{5}{2},3,\frac{7}{2},\frac{9}{2}]$
Galois mean slope: $4.71875$
Galois splitting model:not computed