\(x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{7} + 18\)
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $70$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2^2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[3, 4, \frac{19}{4}, 5]$ |
| Visible Swan slopes: | $[2,3,\frac{15}{4},4]$ |
| Means: | $\langle1, 2, \frac{23}{8}, \frac{55}{16}\rangle$ |
| Rams: | $(2, 4, 7, 9)$ |
| Jump set: | $[1, 3, 7, 15, 31]$ |
| Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
| Associated inertia: | $1$,$1$,$1$,$1$ |
| Indices of inseparability: | $[55, 46, 32, 16, 0]$ |
| Galois degree: |
$128$
|
| Galois group: |
$C_2^4:C_8$ (as 16T257)
|
| Inertia group: |
$C_2^4:C_8$ (as 16T257)
|
| Wild inertia group: |
$C_2^4:C_8$
|
| Galois unramified degree: |
$1$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$
|
| Galois Swan slopes: |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$
|
| Galois mean slope: |
$4.640625$
|
| Galois splitting model: |
$x^{16} + 48 x^{14} - 64 x^{13} + 372 x^{12} - 624 x^{11} + 2576 x^{10} - 1312 x^{9} + 8430 x^{8} - 6672 x^{7} + 6128 x^{6} - 12112 x^{5} + 8412 x^{4} + 8096 x^{3} + 3648 x^{2} - 5552 x + 4991$
|