Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $257$ | |
| Group : | $C_2^5.C_2.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,16,14,4,9,7,5,11)(2,15,13,3,10,8,6,12), (1,5,2,6)(3,8,12,15)(4,7,11,16)(9,14,10,13) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ 32: $(C_8:C_2):C_2$, $C_2^3 : C_4 $, $C_2^2 : C_8$ 64: $((C_8 : C_2):C_2):C_2$ x 2, 16T84 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8:C_2$, $((C_8 : C_2):C_2):C_2$ x 2
Low degree siblings
16T228 x 8, 16T257 x 3, 16T258 x 4, 32T509 x 8, 32T510 x 4, 32T511 x 4, 32T512 x 2, 32T513 x 4, 32T591 x 2, 32T592 x 4, 32T593, 32T594, 32T1797Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7,16)( 8,15)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 5,13)( 6,14)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,11)( 4,12)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,14)( 6,13)( 7,16)( 8,15)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5,14)( 6,13)( 7,15)( 8,16)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5, 6)( 7,16)( 8,15)( 9,10)(13,14)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 5, 7, 9,12,14,16)( 2, 4, 6, 8,10,11,13,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 5,15, 9,12,14, 8)( 2, 4, 6,16,10,11,13, 7)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 6, 8, 2, 4, 5, 7)( 9,12,13,15,10,11,14,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 6,16, 2, 4, 5,15)( 7,10,11,14, 8, 9,12,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14,10,13)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 9,14)( 2, 6,10,13)( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 8,12,15)( 4, 7,11,16)( 9,14,10,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 9,14)( 2, 6,10,13)( 3, 8, 4, 7)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 6, 9,13)( 2, 5,10,14)( 3, 8,12,15)( 4, 7,11,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7, 5, 4, 2, 8, 6, 3)( 9,16,14,11,10,15,13,12)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7,13, 4, 2, 8,14, 3)( 5,12, 9,16, 6,11,10,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7,14,11, 9,16, 5, 4)( 2, 8,13,12,10,15, 6, 3)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7, 6,11, 9,16,13, 4)( 2, 8, 5,12,10,15,14, 3)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)$ |
Group invariants
| Order: | $128=2^{7}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [128, 48] |
| Character table: Data not available. |