Properties

Label 2.1.16.68b1.837
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(68\)
Galois group $C_2\wr (C_2\times C_4)$ (as 16T1385)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{12} + 16 x^{10} + 4 x^{8} + 16 x^{5} + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $68$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, 4, \frac{19}{4}, \frac{19}{4}]$
Visible Swan slopes:$[2,3,\frac{15}{4},\frac{15}{4}]$
Means:$\langle1, 2, \frac{23}{8}, \frac{53}{16}\rangle$
Rams:$(2, 4, 7, 7)$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{2\cdot 5})$, 2.1.4.11a1.17, 2.1.8.30a1.97

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{12} + 16 x^{10} + 4 x^{8} + 16 x^{5} + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^3 + 1$
Associated inertia:$1$,$1$,$2$
Indices of inseparability:$[53, 48, 32, 16, 0]$

Invariants of the Galois closure

Galois degree: $2048$
Galois group: $C_2\wr (C_2\times C_4)$ (as 16T1385)
Inertia group: $C_2^2\wr C_4$ (as 16T1224)
Wild inertia group: not computed
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, \frac{19}{4}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},\frac{15}{4}]$
Galois mean slope: $4.583984375$
Galois splitting model: $x^{16} + 16 x^{14} + 232 x^{12} + 1648 x^{10} - 1520 x^{9} + 8100 x^{8} - 11520 x^{7} + 31072 x^{6} - 39760 x^{5} + 75792 x^{4} - 68800 x^{3} + 67584 x^{2} + 4160 x + 15786$ Copy content Toggle raw display