Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1385$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $5$ | |
| Generators: | (1,9)(2,10)(3,11)(4,12)(5,14,8,15)(6,13,7,16), (1,4,2,3)(5,8,6,7)(9,11,10,12)(13,15,14,16), (1,6,9,13,4,8,11,16)(2,5,10,14,3,7,12,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$, $C_2^3 : C_4 $ x 4, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37 64: $((C_8 : C_2):C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 32T239 128: 16T208, 16T218, 16T219 x 2, 16T227 x 2, 16T230 256: 32T3729, 32T4019 x 2 512: 16T815 x 2, 16T912 1024: 32T39431 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $((C_8 : C_2):C_2):C_2$
Low degree siblings
16T1356 x 16, 16T1379 x 16, 16T1385 x 31, 32T98057 x 16, 32T98058 x 16, 32T98059 x 16, 32T98060 x 16, 32T98061 x 8, 32T98062 x 8, 32T98063 x 16, 32T98064 x 8, 32T98065 x 8, 32T98066 x 8, 32T98067 x 8, 32T98317 x 32, 32T98318 x 32, 32T98319 x 32, 32T98320 x 32, 32T98321 x 128, 32T98322 x 32, 32T98323 x 32, 32T98324 x 32, 32T98325 x 32, 32T98326 x 32, 32T98327 x 16, 32T98328 x 16, 32T98329 x 32, 32T98330 x 16, 32T98331 x 16, 32T98332 x 32, 32T98333 x 128, 32T98334 x 32, 32T98335 x 32, 32T98336 x 8, 32T98337 x 8, 32T98338 x 32, 32T98339 x 16, 32T98340 x 16, 32T98341 x 16, 32T98342 x 32, 32T98343 x 32, 32T98344 x 8, 32T98345 x 32, 32T98346 x 32, 32T98347 x 32, 32T98348 x 8, 32T98349 x 8, 32T98350 x 8, 32T98405 x 32, 32T98406 x 32, 32T98407 x 16, 32T98408 x 16, 32T98409 x 32, 32T98410 x 32, 32T98411 x 16, 32T98412 x 16, 32T98413 x 16, 32T98414 x 16, 32T110359 x 8, 32T115681 x 16Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 71 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $2048=2^{11}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |