\(x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 18\)
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $66$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$C_2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[3, 4, \frac{17}{4}, \frac{19}{4}]$ |
Visible Swan slopes: | $[2,3,\frac{13}{4},\frac{15}{4}]$ |
Means: | $\langle1, 2, \frac{21}{8}, \frac{51}{16}\rangle$ |
Rams: | $(2, 4, 5, 9)$ |
Jump set: | $[1, 3, 7, 15, 31]$ |
Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$,$1$,$1$ |
Indices of inseparability: | $[51, 42, 32, 16, 0]$ |
Galois degree: |
$512$
|
Galois group: |
$C_2^6:(C_2\times C_4)$ (as 16T863)
|
Inertia group: |
$C_2^4.C_4^2$ (as 16T524)
|
Wild inertia group: |
$C_2^4.C_4^2$
|
Galois unramified degree: |
$2$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]$
|
Galois Swan slopes: |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]$
|
Galois mean slope: |
$4.375$
|
Galois splitting model: | $x^{16} - 56 x^{12} + 176 x^{10} - 172 x^{8} + 64 x^{6} - 48 x^{4} - 32 x^{2} + 4$ |