| \(x^{16} + 8 x^{14} + 2 x^{8} + 8 x^{6} + 16 x^{4} + 16 x^{3} + 16 x + 2\) ![Copy content]()  ![Toggle raw display]()  | 
  | Base field: | $\Q_{2}$ | 
| Degree $d$: | $16$ | 
      | Ramification index $e$: | $16$ | 
      | Residue field degree $f$: | $1$ | 
      | Discriminant exponent $c$: | $64$ | 
      | Discriminant root field: | $\Q_{2}$ | 
      | Root number: | $-1$ | 
        | $\Aut(K/\Q_{2})$: | $C_2$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[2, \frac{7}{2}, \frac{17}{4}, \frac{19}{4}]$ | 
      | Visible Swan slopes: | $[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]$ | 
      | Means: | $\langle\frac{1}{2}, \frac{3}{2}, \frac{19}{8}, \frac{49}{16}\rangle$ | 
      | Rams: | $(1, 4, 7, 11)$ | 
      | Jump set: | $[1, 5, 13, 29, 45]$ | 
      | Roots of unity: | $4 = 2^{ 2 }$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
       
    
      | Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ | 
      | Associated inertia: | $1$,$1$,$1$,$1$ | 
      | Indices of inseparability: | $[49, 38, 24, 8, 0]$ | 
    
  
  | Galois degree: | $1024$ | 
  | Galois group: | $(C_2^2\times C_4^2):D_8$ (as 16T1276) | 
  | Inertia group: | $(C_2^2\times C_4^2):D_4$ (as 16T949) | 
  | Wild inertia group: | not computed | 
  | Galois unramified degree: | $2$ | 
  | Galois tame degree: | $1$ | 
  | Galois Artin slopes: | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}]$ | 
| Galois Swan slopes: | $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4}]$ | 
  | Galois mean slope: | $4.41796875$ | 
  | Galois splitting model: | $x^{16} - 8 x^{14} + 52 x^{12} - 488 x^{10} + 2270 x^{8} - 3672 x^{6} + 1764 x^{4} + 200 x^{2} + 25$ ![Copy content]()  ![Toggle raw display]()  |