\(x^{16} + 8 x^{14} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 2\)
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $64$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$Q_8$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, 3, 4, 5]$ |
Visible Swan slopes: | $[1,2,3,4]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}, \frac{49}{16}\rangle$ |
Rams: | $(1, 3, 7, 15)$ |
Jump set: | $[1, 11, 27, 43, 59]$ |
Roots of unity: | $8 = 2^{ 3 }$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$,$1$,$1$ |
Indices of inseparability: | $[49, 34, 20, 8, 0]$ |