Properties

Label 2.1.16.64g1.271
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(64\)
Galois group $D_4.D_4$ (as 16T137)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 34\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $64$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $Q_8$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, 4, 5]$
Visible Swan slopes:$[1,2,3,4]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}, \frac{49}{16}\rangle$
Rams:$(1, 3, 7, 15)$
Jump set:$[1, 13, 29, 45, 61]$
Roots of unity:$8 = 2^{ 3 }$

Intermediate fields

$\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2})$, 2.1.4.8b1.1, 2.1.4.11a1.4, 2.1.4.11a1.3, 2.1.8.24c1.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 34 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[49, 34, 20, 8, 0]$

Invariants of the Galois closure

Galois degree: $64$
Galois group: $D_4.D_4$ (as 16T137)
Inertia group: $C_4.D_4$ (as 16T40)
Wild inertia group: $C_4.D_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, \frac{7}{2}, 4, 5]$
Galois Swan slopes: $[1,2,\frac{5}{2},3,4]$
Galois mean slope: $4.1875$
Galois splitting model:$x^{16} + 36 x^{8} + 2916$