Show commands: Magma
Group invariants
Abstract group: | $D_4.D_4$ |
| |
Order: | $64=2^{6}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $137$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,6,2,5)(3,8,4,7)(9,16,10,15)(11,13,12,14)$, $(9,12,10,11)(13,15,14,16)$, $(1,16)(2,15)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
16T137, 32T150, 32T344 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
2C | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,16)( 2,15)( 3, 9)( 4,10)( 5,11)( 6,12)( 7,13)( 8,14)$ |
2D | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3,15)( 4,16)( 5,14)( 6,13)( 7,11)( 8,12)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,12,10,11)(13,15,14,16)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 8, 2, 7)( 3, 5, 4, 6)( 9,12,10,11)(13,15,14,16)$ |
4C | $4^{2},1^{8}$ | $4$ | $4$ | $6$ | $(1,7,2,8)(3,6,4,5)$ |
4D | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,15,10,16)(11,14,12,13)$ |
4E | $4^{2},2^{4}$ | $4$ | $4$ | $10$ | $( 1, 8, 2, 7)( 3, 5, 4, 6)( 9,10)(11,12)(13,14)(15,16)$ |
4F | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$ |
4G | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,14, 2,13)( 3,11, 4,12)( 5,10, 6, 9)( 7,16, 8,15)$ |
4H | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 9, 2,10)( 3,15, 4,16)( 5,14, 6,13)( 7,11, 8,12)$ |
4I | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,15,10,16)(11,14,12,13)$ |
8A | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,16, 7,13, 2,15, 8,14)( 3, 9, 6,12, 4,10, 5,11)$ |
8B | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 9, 8,12, 2,10, 7,11)( 3,15, 5,14, 4,16, 6,13)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | ||
Size | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2B | 2A | 2B | 2A | 2A | 2A | 2A | 4A | 4B | |
Type | |||||||||||||||||
64.137.1a | R | ||||||||||||||||
64.137.1b | R | ||||||||||||||||
64.137.1c | R | ||||||||||||||||
64.137.1d | R | ||||||||||||||||
64.137.1e | R | ||||||||||||||||
64.137.1f | R | ||||||||||||||||
64.137.1g | R | ||||||||||||||||
64.137.1h | R | ||||||||||||||||
64.137.2a | R | ||||||||||||||||
64.137.2b | R | ||||||||||||||||
64.137.2c | R | ||||||||||||||||
64.137.2d | R | ||||||||||||||||
64.137.2e | R | ||||||||||||||||
64.137.2f | R | ||||||||||||||||
64.137.4a | S | ||||||||||||||||
64.137.4b | S |
Regular extensions
Data not computed