Properties

Label 2.1.16.62c1.217
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(62\)
Galois group $C_2^6:D_4$ (as 16T969)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{15} + 16 x^{11} + 8 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 8 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $62$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}, \frac{7}{2}, \frac{19}{4}]$
Visible Swan slopes:$[2,\frac{5}{2},\frac{5}{2},\frac{15}{4}]$
Means:$\langle1, \frac{7}{4}, \frac{17}{8}, \frac{47}{16}\rangle$
Rams:$(2, 3, 3, 13)$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-2})$, 2.1.4.10a1.5, 2.1.8.24b1.4, 2.1.8.29a1.80, 2.1.8.29a1.75

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{15} + 16 x^{11} + 8 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 8 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^6 + 1$,$z + 1$
Associated inertia:$1$,$2$,$1$
Indices of inseparability:$[47, 34, 32, 16, 0]$

Invariants of the Galois closure

Galois degree: $512$
Galois group: $C_2^6:D_4$ (as 16T969)
Inertia group: $C_2^6:C_4$ (as 16T648)
Wild inertia group: $C_2^6:C_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$
Galois mean slope: $4.3359375$
Galois splitting model: $x^{16} - 32 x^{14} + 260 x^{12} + 768 x^{10} - 9526 x^{8} - 72288 x^{6} + 656780 x^{4} - 1060928 x^{2} + 841$ Copy content Toggle raw display