\(x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 24 x^{4} + 16 x + 2\)
    
    
    
         
    
    
         
    
  | 
  | Base field: |   $\Q_{2}$
       | 
| Degree $d$: |  $16$ | 
      | Ramification index $e$: |  $16$ | 
      | Residue field degree $f$: |  $1$ | 
      | Discriminant exponent $c$: |  $60$ | 
      | Discriminant root field: |  $\Q_{2}$ | 
      | Root number: |  $-1$ | 
        | $\Aut(K/\Q_{2})$:
             |  
      $C_2^2$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[3, \frac{7}{2}, 4, \frac{17}{4}]$ | 
      | Visible Swan slopes: | $[2,\frac{5}{2},3,\frac{13}{4}]$ | 
      | Means: | $\langle1, \frac{7}{4}, \frac{19}{8}, \frac{45}{16}\rangle$ | 
      | Rams: | $(2, 3, 5, 7)$ | 
      | Jump set: | $[1, 3, 7, 15, 31]$ | 
      | Roots of unity: | $2$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
      
    
      | Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ | 
      | Associated inertia: | $1$,$1$,$1$,$1$ | 
      | Indices of inseparability: | $[45, 38, 28, 16, 0]$ | 
    
  
  | Galois degree: | 
      $128$
     | 
  | Galois group: | 
      $C_2^4:D_4$ (as 16T392)
     | 
  | Inertia group: | 
      $C_2^4:C_4$ (as 16T93)
     | 
  | Wild inertia group: | 
    $C_2^4:C_4$
     | 
  | Galois unramified degree: | 
    $2$
     | 
  | Galois tame degree: | 
    $1$
     | 
  | Galois Artin slopes: | 
    $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]$
     | 
| Galois Swan slopes: | 
    $[1,1,2,\frac{5}{2},3,\frac{13}{4}]$
     | 
  | Galois mean slope: | 
    $3.84375$
     | 
  | Galois splitting model: | 
    $x^{16} - 8 x^{14} - 8 x^{13} + 136 x^{12} + 368 x^{11} + 184 x^{10} - 728 x^{9} - 1098 x^{8} - 896 x^{7} - 1712 x^{6} + 3752 x^{5} + 6384 x^{4} - 5552 x^{3} + 2096 x^{2} - 456 x + 51$
    
    
    
         
    
    
         
    
 |