\(x^{16} + 8 x^{15} + 8 x^{13} + 18 x^{12} + 16 x^{9} + 16 x^{7} + 16 x^{3} + 2\)
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $59$ |
Discriminant root field: | $\Q_{2}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$C_2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, 2, \frac{15}{4}, \frac{19}{4}]$ |
Visible Swan slopes: | $[1,1,\frac{11}{4},\frac{15}{4}]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{4}, \frac{11}{4}\rangle$ |
Rams: | $(1, 1, 8, 16)$ |
Jump set: | $[1, 3, 11, 27, 43]$ |
Roots of unity: | $4 = 2^{ 2 }$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Galois degree: |
$512$
|
Galois group: |
$D_8\wr C_2$ (as 16T972)
|
Inertia group: |
$D_4^2:C_2^2$ (as 16T665)
|
Wild inertia group: |
$D_4^2:C_2^2$
|
Galois unramified degree: |
$2$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, \frac{9}{2}, \frac{19}{4}]$
|
Galois Swan slopes: |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},\frac{7}{2},\frac{15}{4}]$
|
Galois mean slope: |
$4.3671875$
|
Galois splitting model: |
$x^{16} - 12 x^{14} + 66 x^{12} - 240 x^{10} + 1000 x^{8} - 5000 x^{6} + 15000 x^{4} - 25000 x^{2} + 31250$
|