Show commands: Magma
Group invariants
Abstract group: | $D_8\wr C_2$ |
| |
Order: | $512=2^{9}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $6$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $972$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,13,2,14)(3,11,4,12)(5,10,6,9)(7,16,8,15)$, $(1,2)(3,4)(5,6)(7,8)$, $(1,8)(2,7)(3,5)(4,6)(9,13,10,14)(11,15,12,16)$, $(1,13,5,10)(2,14,6,9)(3,11)(4,12)(7,16,8,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ $128$: $C_2 \wr C_2\wr C_2$ $256$: 16T659 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_2 \wr C_2\wr C_2$
Low degree siblings
16T972 x 7, 32T10866 x 4, 32T10867 x 4, 32T10868 x 4, 32T10869 x 4, 32T10870 x 4, 32T10871 x 4, 32T10872 x 4, 32T21596 x 2, 32T21635 x 2, 32T21959 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
2C | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,10)(11,12)(13,14)(15,16)$ |
2D | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $(1,7)(2,8)(3,6)(4,5)$ |
2E | $2^{3},1^{10}$ | $8$ | $2$ | $3$ | $( 9,14)(10,13)(15,16)$ |
2F | $2^{7},1^{2}$ | $8$ | $2$ | $7$ | $( 1, 2)( 3, 8)( 4, 7)( 9,10)(11,12)(13,14)(15,16)$ |
2G | $2^{8}$ | $16$ | $2$ | $8$ | $( 1,16)( 2,15)( 3, 9)( 4,10)( 5,12)( 6,11)( 7,13)( 8,14)$ |
2H | $2^{8}$ | $16$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,15)(10,16)(11,13)(12,14)$ |
2I | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 1, 2)( 3, 8)( 4, 7)( 9,10)(11,16)(12,15)$ |
2J | $2^{7},1^{2}$ | $32$ | $2$ | $7$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,13)(10,14)(11,12)$ |
4A | $4^{2},1^{8}$ | $4$ | $4$ | $6$ | $( 9,14,10,13)(11,16,12,15)$ |
4B | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14,10,13)(11,16,12,15)$ |
4C | $4^{2},2^{4}$ | $4$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,13,10,14)(11,15,12,16)$ |
4D | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,15, 2,16)( 3,10, 4, 9)( 5,11, 6,12)( 7,14, 8,13)$ |
4E | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,13,10,14)(11,15,12,16)$ |
4F | $4^{2},2^{3},1^{2}$ | $16$ | $4$ | $9$ | $( 1, 2)( 3, 8)( 4, 7)( 9,14,10,13)(11,16,12,15)$ |
4G | $4^{4}$ | $64$ | $4$ | $12$ | $( 1,13, 3,11)( 2,14, 4,12)( 5,10, 7,16)( 6, 9, 8,15)$ |
4H | $4^{3},2^{2}$ | $64$ | $4$ | $11$ | $( 1,10, 2, 9)( 3,15, 8,12)( 4,16, 7,11)( 5,14)( 6,13)$ |
8A1 | $8,2^{4}$ | $4$ | $8$ | $11$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11,14,16,10,12,13,15)$ |
8A3 | $8,2^{4}$ | $4$ | $8$ | $11$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12,14,15,10,11,13,16)$ |
8B1 | $8,1^{8}$ | $4$ | $8$ | $7$ | $( 9,12,14,15,10,11,13,16)$ |
8B3 | $8,1^{8}$ | $4$ | $8$ | $7$ | $( 9,11,14,16,10,12,13,15)$ |
8C1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,16,13,11,10,15,14,12)$ |
8C3 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 8, 6, 3, 2, 7, 5, 4)( 9,11,14,16,10,12,13,15)$ |
8D | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,11,14,16,10,12,13,15)$ |
8E1 | $8,4^{2}$ | $8$ | $8$ | $13$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,16,13,11,10,15,14,12)$ |
8E3 | $8,4^{2}$ | $8$ | $8$ | $13$ | $( 1, 4, 5, 7, 2, 3, 6, 8)( 9,13,10,14)(11,15,12,16)$ |
8F1 | $8,2^{4}$ | $16$ | $8$ | $11$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,12,14,15,10,11,13,16)$ |
8F3 | $8,2^{4}$ | $16$ | $8$ | $11$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,11,14,16,10,12,13,15)$ |
8G1 | $8,2^{3},1^{2}$ | $16$ | $8$ | $10$ | $( 3, 7)( 4, 8)( 5, 6)( 9,11,14,16,10,12,13,15)$ |
8G3 | $8,2^{3},1^{2}$ | $16$ | $8$ | $10$ | $( 3, 7)( 4, 8)( 5, 6)( 9,12,14,15,10,11,13,16)$ |
8H | $8^{2}$ | $32$ | $8$ | $14$ | $( 1,13, 6,10, 2,14, 5, 9)( 3,16, 7,11, 4,15, 8,12)$ |
16A1 | $16$ | $32$ | $16$ | $15$ | $( 1,11, 3,10, 5,15, 8,14, 2,12, 4, 9, 6,16, 7,13)$ |
16A3 | $16$ | $32$ | $16$ | $15$ | $( 1,10, 8,12, 6,13, 3,15, 2, 9, 7,11, 5,14, 4,16)$ |
Malle's constant $a(G)$: $1/3$
Character table
35 x 35 character table
Regular extensions
Data not computed