Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $972$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $6$ | |
| Generators: | (1,13,2,14)(3,11,4,12)(5,10,6,9)(7,16,8,15), (1,2)(3,4)(5,6)(7,8), (1,8)(2,7)(3,5)(4,6)(9,13,10,14)(11,15,12,16), (1,13,5,10)(2,14,6,9)(3,11)(4,12)(7,16,8,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ 128: $C_2 \wr C_2\wr C_2$ 256: 16T659 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_2 \wr C_2\wr C_2$
Low degree siblings
16T972 x 7, 32T10866 x 4, 32T10867 x 4, 32T10868 x 4, 32T10869 x 4, 32T10870 x 4, 32T10871 x 4, 32T10872 x 4, 32T21596 x 2, 32T21635 x 2, 32T21959 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14,10,13)(11,16,12,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1,13, 2,14)( 3,11, 4,12)( 5,10, 6, 9)( 7,16, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1,14)( 2,13)( 3,12)( 4,11)( 5, 9)( 6,10)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 7)( 4, 8)( 5, 6)(11,15)(12,16)(13,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,12,14,15,10,11,13,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 4, 5, 7, 2, 3, 6, 8)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,16, 5,12, 2,15, 6,11)( 3, 9, 8,14, 4,10, 7,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 8, 2, 2, 2, 1, 1 $ | $16$ | $8$ | $( 3, 7)( 4, 8)( 5, 6)( 9,15,13,12,10,16,14,11)$ |
| $ 8, 2, 2, 2, 1, 1 $ | $16$ | $8$ | $( 1, 2)( 3, 8)( 4, 7)( 9,16,13,11,10,15,14,12)$ |
| $ 4, 4, 4, 4 $ | $64$ | $4$ | $( 1,13, 3,16)( 2,14, 4,15)( 5, 9, 7,11)( 6,10, 8,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,16)(10,15)(11,14)(12,13)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $(11,15)(12,16)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,16)(12,15)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $16$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14)(10,13)(15,16)$ |
| $ 4, 4, 4, 2, 2 $ | $64$ | $4$ | $( 1,13)( 2,14)( 3,11, 7,16)( 4,12, 8,15)( 5,10, 6, 9)$ |
| $ 8, 2, 2, 2, 2 $ | $16$ | $8$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 8, 2, 2, 2, 2 $ | $16$ | $8$ | $( 1, 4, 5, 7, 2, 3, 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $32$ | $2$ | $( 3, 7)( 4, 8)( 5, 6)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 16 $ | $32$ | $16$ | $( 1,13, 4,15, 5, 9, 7,11, 2,14, 3,16, 6,10, 8,12)$ |
| $ 16 $ | $32$ | $16$ | $( 1, 9, 3,12, 5,14, 8,15, 2,10, 4,11, 6,13, 7,16)$ |
| $ 8, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $8$ | $( 9,11,14,16,10,12,13,15)$ |
| $ 8, 2, 2, 2, 2 $ | $4$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12,14,15,10,11,13,16)$ |
| $ 8, 4, 4 $ | $8$ | $8$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,16,13,11,10,15,14,12)$ |
| $ 8, 4, 4 $ | $8$ | $8$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,15,13,12,10,16,14,11)$ |
| $ 8, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $8$ | $( 9,12,14,15,10,11,13,16)$ |
| $ 8, 2, 2, 2, 2 $ | $4$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11,14,16,10,12,13,15)$ |
Group invariants
| Order: | $512=2^{9}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [512, 60809] |
| Character table: Data not available. |