Defining polynomial
\(x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 26 x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 10\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $58$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: | $D_8$ |
This field is Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 3, \frac{7}{2}, \frac{9}{2}]$ |
Visible Swan slopes: | $[1,2,\frac{5}{2},\frac{7}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{43}{16}\rangle$ |
Rams: | $(1, 3, 5, 13)$ |
Jump set: | $[1, 7, 14, 32, 48]$ |
Roots of unity: | $4 = 2^{ 2 }$ |
Intermediate fields
$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2\cdot 5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, 2.1.4.8b1.2, 2.1.4.9a1.3 x2, 2.1.4.10a1.3 x2, 2.1.8.22d1.15, 2.1.8.27a1.43 x4, 2.1.8.28a1.22 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 26 x^{8} + 16 x^{7} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 10 \)
|
Ramification polygon
Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$,$1$,$1$ |
Indices of inseparability: | $[43, 30, 20, 8, 0]$ |
Invariants of the Galois closure
Galois degree: | $16$ |
Galois group: | $D_8$ (as 16T13) |
Inertia group: | $D_8$ (as 16T13) |
Wild inertia group: | $D_8$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 3, \frac{7}{2}, \frac{9}{2}]$ |
Galois Swan slopes: | $[1,2,\frac{5}{2},\frac{7}{2}]$ |
Galois mean slope: | $3.625$ |
Galois splitting model: |
$x^{16} + 8 x^{14} + 4 x^{12} + 104 x^{10} + 614 x^{8} + 1528 x^{6} + 836 x^{4} + 280 x^{2} + 225$
|