Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $13$ | |
| Group : | $D_{8}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,11)(2,12)(3,10)(4,9)(5,8)(6,7)(13,15)(14,16), (1,4,6,8,10,12,14,15)(2,3,5,7,9,11,13,16) | |
| $|\Aut(F/K)|$: | $16$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Low degree siblings
8T6 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,15)( 4,16)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 4, 6, 8,10,12,14,15)( 2, 3, 5, 7, 9,11,13,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6,10,14)( 2, 5, 9,13)( 3, 7,11,16)( 4, 8,12,15)$ |
| $ 8, 8 $ | $2$ | $8$ | $( 1, 8,14, 4,10,15, 6,12)( 2, 7,13, 3, 9,16, 5,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,13)( 6,14)( 7,16)( 8,15)$ |
Group invariants
| Order: | $16=2^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [16, 7] |
| Character table: |
2 4 2 2 3 3 3 4
1a 2a 2b 8a 4a 8b 2c
2P 1a 1a 1a 4a 2c 4a 1a
3P 1a 2a 2b 8b 4a 8a 2c
5P 1a 2a 2b 8b 4a 8a 2c
7P 1a 2a 2b 8a 4a 8b 2c
X.1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1
X.3 1 -1 1 -1 1 -1 1
X.4 1 1 -1 -1 1 -1 1
X.5 2 . . . -2 . 2
X.6 2 . . A . -A -2
X.7 2 . . -A . A -2
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|