Properties

Label 2.1.16.58m1.1088
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(58\)
Galois group $Q_{16}:C_2$ (as 16T50)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 4 x^{14} + 8 x^{13} + 8 x^{11} + 10 x^{8} + 16 x^{7} + 4 x^{4} + 16 x^{3} + 16 x + 14\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $58$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $Q_8$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, \frac{7}{2}, \frac{9}{2}]$
Visible Swan slopes:$[1,2,\frac{5}{2},\frac{7}{2}]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}, \frac{43}{16}\rangle$
Rams:$(1, 3, 5, 13)$
Jump set:$[1, 2, 4, 8, 32]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, $\Q_{2}(\sqrt{2})$, 2.1.4.10a1.7 x2, 2.1.4.9a1.6 x2, 2.1.4.8b1.6, 2.1.8.22d1.23

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 4 x^{14} + 8 x^{13} + 8 x^{11} + 10 x^{8} + 16 x^{7} + 4 x^{4} + 16 x^{3} + 16 x + 14 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[43, 30, 20, 8, 0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $Q_{16}:C_2$ (as 16T50)
Inertia group: $\SD_{16}$ (as 16T12)
Wild inertia group: $\SD_{16}$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, \frac{7}{2}, \frac{9}{2}]$
Galois Swan slopes: $[1,2,\frac{5}{2},\frac{7}{2}]$
Galois mean slope: $3.625$
Galois splitting model:$x^{16} - 84 x^{12} + 1770 x^{8} - 1404 x^{4} + 9$